Most Down Articles

    Published in last 1 year | In last 2 years| In last 3 years| All| Most Downloaded in Recent Month| Most Downloaded in Recent Year|

    Most Downloaded in Recent Month
    Please wait a minute...
    For Selected: Toggle Thumbnails
    Tuning the Thermal Conductivity of Polymer: A Recent Progress Report
    Progress in Physics    2018, 38 (2): 69-81.  
    Abstract819)      PDF (1047KB)(16680)      
    Polymer-based thermal interface materials play an important role in the heat removal and thermal management of high-density integrated circuits. Here, we introduce the theoretical and experi- mental progress of the thermal conductivity of polymers. Main foci are given to enhancement of thermal conductivity in polymers, including stretched polymer and polymer-based nanocompos- ites. Bottlenecks and challenges in this eld are also comprehensive discussed in this review.
    Related Articles | Metrics
    A survey of heavy-antiheavy hadronic molecules
    Dong Xiang-Kun, Guo Feng-Kun, Zou Bing-Song
    Progress in Physics    2021, 41 (2): 65-93.   DOI: 10.13725/j.cnki.pip.2021.02.001
    Abstract1363)      PDF (1088KB)(13670)      

    Many efforts have been made to reveal the nature of the overabundant resonant structures observed by the worldwide experiments in the last two decades. Hadronic molecules attract special attention because many of these seemingly unconventional resonances are located close to the threshold of a pair of hadrons. To give an overall feature of the spectrum of hadronic molecules composed of a pair of heavy-antiheavy hadrons, namely, which pairs are possible to form molecular states, we take charmed hadrons for example to investigate the interaction between them and search for poles by solving the Bethe-Salpeter equation. We consider all possible combinations of hadron pairs of the S-wave singly-charmed mesons and baryons as well as the narrow P-wave charmed mesons. The interactions, which are assumed to be meson-exchange saturated, are described by constant contact terms which are resummed to generate poles. It turns out that if a system is attractive near threshold by the light meson exchange, there is a pole close to threshold corresponding to a bound state or a virtual state, depending on the strength of interaction and the cutoff. In total, 229 molecular states are predicted. The observed near-threshold structures with hidden-charm, like the famous X(3872) and Pc states, fit into the spectrum we obtain. We also highlight a  ΛcΛc  bound state that has a pole consistent with the cross section of the e+e- ΛcΛc  precisely measured by the BESIII Collaboration.

    Related Articles | Metrics
    Progress in Physics    2019, 39 (4): 144-152.  
    Abstract598)      PDF (2346KB)(3763)      
    Related Articles | Metrics
    Research Progress on Two-Dimensional Multiferroic Materials and Their Magnetoelectric Properties
    ZHENG Hongqian , HU Ting , HUANG Chengxi , DU Yongping , WAN Yi
    Progress in Physics    2025, 45 (3): 105-117.   DOI: 10.13725/j.cnki.pip.2025.03.001
    Abstract873)      PDF (9286KB)(1744)      

    In recent years, multiferroic materials, which possess both ferromagnetic and ferroelectric properties, have attracted intense attention from researchers due to their novel and rich physical characteristics, as well as their broad potential applications in fields such as information storage and sensor technologies. As understanding of the properties of multiferroic materials deepens, researchers have begun to explore their behavior at smaller scales, particularly focusing on two-dimensional (2D) materials. Compared to three-dimensional (3D) materials, 2D materials, owing to their unique structural features and significant size effects, often exhibit more superior performance in terms of mechanical, optical, thermal, and magnetic properties. However, it is noteworthy that current research on 2D multiferroic materials is primarily concentrated on theoretical predictions, with experimental progress lagging behind. In this context, this paper first briefly reviews the development history of multiferroic materials, then elaborates on the characteristics and advantages of 2D materials, and discusses the potential applications of 2D multiferroic materials. Subsequently, the paper provides an overview of the current research status, covering related physical phenomena and mechanisms, experimental preparation methods, performance regulation technologies, and characterization techniques. Furthermore, this paper also enumerates potential 2D multiferroic materials predicted by theory and, based on this, delves into the challenges faced by current research and future directions for development. 

    Related Articles | Metrics
    Development Status of Topological Superfluid in Ultracold Atoms
    FENG Jian, ZHANG Wei-wei, LIN Liang-wei, CAI Qi-peng, ZHANG Yi-cai, LIU Chao-fei
    Progress in Physics    2022, 42 (3): 67-95.   DOI: 10.13725/j.cnki.pip.2022.03.001
    Abstract1345)      PDF (1246KB)(7711)      
    The topological superfluid state is protected by the energy gap in the bulk, but it can accommodate the gapless Majorana fermions at the edge of the system. The Majorana fermions satisfy non-Abelian statistics and are protected by topology and have good stability, they can carry quantized information and can be used in the study of topological quantum computing. In recent years, theoretical work has predicted the possible topological superfluid states in various systems. Firstly, we introduce the topological superfluid in various optical lattice models. The ultracold atoms of optical lattice have good controllability and universality. It is an ideal model system to realize topological superfluid. Next, we introduce the topological superfluid under the control of spin orbit coupling. The spin orbit coupling effect is an important condition to induce the topological phase, and the artificial spin orbit coupling has been realized in the experiment. Which makes a breakthrough for the experimental observation of topological superfluid. With the improvement of experimental technology in recent years, the topological FFLO superfluid phase, which was difficult to observe in the experiment and ignored by people, has also become a research hotspot. Therefore, we next introduce the topological FFLO superfluid. In addition, we also introduce the progress in other aspects of topological superfluid, including topological superfluid induced by soliton, three-component topological superfluid, topological superfluid with large Chern number, and the high critical temperature of topological superfluid. In the experiment, how to detect and implement topological superfluid is the purpose and significance of our research. Therefore, we introduce the identification and implementation of topological superfluid at the end of the article.
    Related Articles | Metrics
    A Brief History of Solid State Physics
    SHI Feng , HAN Xiu-jun , ZHANG Ling-cui , XU Yue , ZHANG Chuan-jiang
    Progress in Physics    2021, 41 (4): 170-187.   DOI: 10.13725/j.cnki.pip.2021.04.002
    Abstract3380)      PDF (446KB)(13753)      

    The study of many-body problems in solid-state physics is an important branch of physics, covering a wide range of areas, and it is also the basis of many technical disciplines including materials science. This article discusses the brief history of the development of solid state physics, including the initial development history, the study of thermal properties, Weidmann-Franz law, the study history of the microscopic geometric structure of crystals, the free electron gas model, the energy band theory of solids, and the The research of solid magnetism, the information age, the development of solid state physics in China, and the teaching materials of solid state physics, etc., briefly describe the major events in the development of solid state physics, and the influential scientists and their contributions.

    Related Articles | Metrics
    MAX phase:Synthesis, Structure and Property
    Tian Li, Fu Chao, Li Yue-Ming, Fan Xiao-Xing, Wang En-Ge, Zhao Guo-Rui
    Progress in Physics    2021, 41 (1): 39-61.   DOI: 10.13725/j.cnki.pip.2021.01.002
    Abstract3324)      PDF (26993KB)(2984)      
    MAX phase ceramics have a unique crystal structure in which MX sheets and A-element layers are alternately stacked, so that it has both the excellent characteristics of metal and ceramics. They exhibit high electrical and thermal conductivities, and are machinable. And at the same time, they are resistant to oxidation and corrosion, and elastic stiff. They are attracting more and more attention in the past 20 years with their potential widely applications. In this paper, some research work on MAX phase and MXenes materials are reviewed. Firstly, recent discoveries on the newly MAX phases and their preparation method are introduced. Then, from the physical-property perspective, the research progress on the elastic, electrical, thermal and magnetic properties and radiation resistance of typical MAX phases is reviewed. In addition, a further introduction of MXene, which is a two-dimensional derivative of MAX phases, and its synthesis, characterization, properties and its application in electrochemical energy storage and in catalysis is presented. Finally, important future research directions are discussed. These include charting the unknown regions in phase diagrams to discover new MAX phases, exploring their unknown special physical properties, studying 2D derivative MXene, as well as researching their synthesis, characterization, and potential applications.
    Related Articles | Metrics
    The exotic electronic properties of the topological Kondo insulator SmB 6
    ZHAO Gan, ZHANG Ming-yuan, WANG Jia-min, ZHANG Wang, MIAO Lin
    Progress in Physics    2021, 41 (6): 231-.   DOI: 10.13725/j.cnki.pip.2021.06.001
    Abstract1703)      PDF (9363KB)(7241)      

    The topological Kondo insulator (TKI) is an intrinsic electronic correlated topological system in which the bulk bandgap is originated from the Kondo correlation. Since the theoretical idea of TKI was proposed in 2010, SmB6 was predicted to be the first candidate topological Kondo insulator. In the last decade, SmB6 was investigated extensively by various experimental methods, and the accumulated evidence confirmed that SmB6 is a topological Kondo insulator. This review article presented some key experimental evidence, including electronic transportation measurements, ARPES study of low-energy band structure, and STM characterization of the surface. We also discussed how these experimental results establish the topological narrative of SmB6. Meanwhile, some extremely exotic properties like the 3D quantum oscillations and the bulk-surface valence seperation of SmB6 are exhibited. The related physical origin is still unknown and needs extra efforts to unveil the underlying physics.

    Related Articles | Metrics
    Gauge Field and Fiber Bundle:Its Contents, Methods, and Meanings 
    ZHAO Song-nian , LU Bo, CHEN Ken, HUANG Xu
    Progress in Physics    2023, 43 (1): 10-24.   DOI: 10.13725/j.cnki.pip.2023.01.002
    Abstract3000)      PDF (708KB)(4445)      
    Related Articles | Metrics
    Hydrogen-Based Superconductors under High Pressures
    DU Ming-yang, ZHANG Zi-han, DUAN De-fang, CUI Tian
    Progress in Physics    2022, 42 (5): 184-192.   DOI: 10.13725/j.cnki.pip.2022.05.002
    Abstract1593)      PDF (3042KB)(4187)      

    Achieving room temperature superconductivity has always been the dream of mankind pursuing for a long time. Finding and synthesizing new materials with room temperature superconductivity is the ”Holy Grail” of condensed matter physics. Since the theoretical and experimental discovery of H3S and LaH10 with high superconducting critical temperature above 200 K, the hydrogen-based superconductors became the best candidate for achieving room temperature superconductivity, which is also one of the hot areas of multi-disciplinary research in physics, materials science etc. In this work, we outline the development history of superconductors, introduce several typical superconducting materials, focus on the current progress and challenges of hydrogen based superconductors under high pressures, discuss the design ideas of hydrogen based high-temperature superconductors in the middle and low pressure range, and look forward to the possibility of hydrogen-based superconductors with high critical temperature and even room temperature under low pressure or ambient pressure.

    Related Articles | Metrics
    Nonlinear Dynamics and Applications of Spin Hall Nano-Oscillators
    Liu Rong-Hua , Li Li-Yuan , Chen Li-Na , Zhou Kai-Yuan , Du You-Wei
    Progress in Physics    2020, 40 (6): 189-210.   DOI: 10.13725/j.cnki.pip.2020.06.003
    Abstract2121)      PDF (3549KB)(4457)      

    Spin Hall nano oscillator (SHNO), a new type spintronic nano-device, can generate microwave signal and excite coherent spin waves due to spin current-driven magnetization precession and have strong potential for applications from data storage,rf communication, microwave generation to neuromorphic computing. In this review, we focus on the complex nonlinear dynamic characteristics of spin-wave modes generated by SHNOs in the various ferromagnetic/nonmagnetic (FM/NM) bilayer systems with an extended free layer. Based on the abundantly previous experimental results obtained by combining microwave spectroscopy and micro-focused Brillouin light scattering techniques, as well as micromagnetic simulation, we detailedly describe and summarize the experimental parameters dependent magnetic dynamics of SHNOs with different device configurations and magnetic materials, such as in-plane nanogap-type, nanoconstriction-type, nanowire-type, vertical nanocontact-type SHNOs with in-plane or out-of-plane magnetization. Finally, we also discuss mutual synchronization of SHNO arrays and the potential applications in magnon-based logic devices with ultralow energy consumption and spin-based artificial neural network for neuromorphic computing in the field of artificial intelligence.

    Related Articles | Metrics
    Development of Functional Materials for Photocatalytic Reduction of CO 2
    TANG Lan-qin, JIA Yin, ZHU Zhi-shang, WU Cong-ping, ZHOU Yong, ZOU Zhi-gang
    Progress in Physics    2021, 41 (6): 254-263.   DOI: 10.13725/j.cnki.pip.2021.06.002
    Abstract4418)      PDF (3681KB)(11479)      

    With the increase of CO2 greenhouse gas emissions, seeking new energy sources to build a low carbon society has become more urgent since the 21st century. The conversion of CO2 to valuable hydrocarbon fuel driven by solar energy is of great potential and promising to realize the global carbon balance. Exploring semiconductor materials is very important for the photoreduction of CO2. Therefore, it will be the main research direction to fabricate highly efficient photocatalysis materials. This paper reviews recent research on photocatalytic reduction of CO2 to the hydrocarbon fuels in our groups, mainly focusing on nanostructure and component regulations of semiconductor catalysts, including TiO2, V, W, Ge Ga based materials, C3N4 based and some other materials, for the photocatalytic reduction of CO2.

    Related Articles | Metrics
    Progress in Physics    2012, 32 (2): 57-59.  
    Abstract679)      PDF (5636KB)(5255)      
    Related Articles | Metrics
    Progress in Physics    2012, 32 (1): 33-56.  
    Abstract805)      PDF (1672KB)(5259)      
    Related Articles | Metrics
    Theoretical and simulational studies on the dynamics of polymer translocation
    Progress in Physics    2017, 37 (6): 212-224.  
    Abstract874)      PDF (1074KB)(4001)      
    The translocation of polymer chains through nanotubes or nanopores is an important phenomenon which is highly concerned in physics, chemistry, and biology. It is of potential applications in life process and technology eld, and extensive experimental, theoretical, and simulation investiga- tions on this phenomenon have been carried out. This review article summarizes the latest theo- retical and simulation progress on the polymer translocation, and discusses the dynamic process of polymer chain translocation in the framework of translocation time. Based on the theoreti- cal calculations and simulations, the dependence of free energy landscape on the polymer-pore interaction, composition and charge distribution of polymer chain, details of nanopores, and tem- perature are discussed and compared with the predictions of free energy landscape. The results are helpful for a better understanding of the underlying mechanisms and controlling approaches of polymer translocation.
    Related Articles | Metrics
    Progress in Physics    2014, 34 (2): 47-117.  
    Abstract1024)      PDF (9236KB)(11130)      
    Related Articles | Metrics
    Progress in Physics    2014, 34 (1): 1-9.  
    Abstract880)      PDF (1363KB)(4190)      
    Related Articles | Metrics
    Spin Hall Effect of Light and Its Applications in Measurements of Physical Parameters
    LIU Shuo-qing , CHEN Shi-zhen , LUO Hai-lu
    Progress in Physics    2022, 42 (2): 35-53.   DOI: 10.13725/j.cnki.pip.2022.02.001
    Abstract3056)      PDF (8674KB)(6850)      
    The spin Hall effect (SHE) of light refers to the transverse spin-dependent splitting of photons with opposite spin angular momentum after the beam passes through inhomogeneous media, in the direction perpendicular to the incident plane. It can be regarded as an analogue of the SHE in electronic systems, where the spin photons and the refractive index gradient replace the spin electrons and the electronic potential, respectively. Fundamentally, the SHE of light originates from the spin-orbit interaction of photons and depends mainly on two different geometric phases, namely, the spin redirection Rytov-Vlasimirskii-Berry phase in the momentum space and the Pancharatnam-Berry phase in the Stokes parameter space. Meanwhile, the SHE of light exhibits great sensitivity to the physical parameters, and combined with quantum weak measurements, has important application prospects in fields of physical parameters measurement and optical sensing. We briefly analyze the physical origin of the SHE of light, review its recent progress in different physical systems, and present its applications in measurements of physical parameters. Finally, the possible developing trends in optical analog computing, microscopy imaging, and quantum imaging are discussed.
    Related Articles | Metrics
    Progress in Physics    2017, 37 (2): 41-74.  
    Abstract828)      PDF (652KB)(3264)      
    Related Articles | Metrics
    A Brief History of Electronic Development
    SHI Feng , LIU Jin-hua , ZHANG Ling-cui , XU Yue , LOU You-xin , SHEN Yan , ZHAO Jin-bo
    Progress in Physics    2025, 45 (2): 79-104.   DOI: 10.13725/j.cnki.pip.2025.02.003
    Abstract803)      PDF (516KB)(1671)      

    Electron is an inseparable part of atom. The ancients believed that atoms could not be divied, and it was not until the late 19th century that Thomson discovered the existence of electron, which proved that atom is redividable. After that, the complex and challenging journey to uncover the volatility of electrons, electron spin, and positrons led to groundbreaking discoveries, which resulted in numerous of Nobel Prizes were awarded in Physics. The discovery of electron played an important role in promoting the birth of quantum mechani. It was through the meticulous examination of atomic structure models that the scientists progressively ventured into the realms of quantum mechanics and quantum field theory. Similarly, electrons have played a positive role in promoting our understanding of various materials, leading to the development of to many theories, such as Lorentz’s free electron theory, Sommerfeld model, and band theory. Especially band theory has led to a revolution in modern electronic technology, ushering humanity into the information age. 

    Related Articles | Metrics