Most Down Articles

    Published in last 1 year | In last 2 years| In last 3 years| All| Most Downloaded in Recent Month| Most Downloaded in Recent Year|

    Most Downloaded in Recent Month
    Please wait a minute...
    For Selected: Toggle Thumbnails
    Tuning the Thermal Conductivity of Polymer: A Recent Progress Report
    Progress in Physics    2018, 38 (2): 69-81.  
    Abstract697)      PDF (1047KB)(5379)      
    Polymer-based thermal interface materials play an important role in the heat removal and thermal management of high-density integrated circuits. Here, we introduce the theoretical and experi- mental progress of the thermal conductivity of polymers. Main foci are given to enhancement of thermal conductivity in polymers, including stretched polymer and polymer-based nanocompos- ites. Bottlenecks and challenges in this eld are also comprehensive discussed in this review.
    Related Articles | Metrics
    Progress in Physics    2019, 39 (4): 144-152.  
    Abstract518)      PDF (2346KB)(2121)      
    Related Articles | Metrics
    A survey of heavy-antiheavy hadronic molecules
    Dong Xiang-Kun, Guo Feng-Kun, Zou Bing-Song
    Progress in Physics    2021, 41 (2): 65-93.   DOI: 10.13725/j.cnki.pip.2021.02.001
    Abstract1195)      PDF (1088KB)(10897)      

    Many efforts have been made to reveal the nature of the overabundant resonant structures observed by the worldwide experiments in the last two decades. Hadronic molecules attract special attention because many of these seemingly unconventional resonances are located close to the threshold of a pair of hadrons. To give an overall feature of the spectrum of hadronic molecules composed of a pair of heavy-antiheavy hadrons, namely, which pairs are possible to form molecular states, we take charmed hadrons for example to investigate the interaction between them and search for poles by solving the Bethe-Salpeter equation. We consider all possible combinations of hadron pairs of the S-wave singly-charmed mesons and baryons as well as the narrow P-wave charmed mesons. The interactions, which are assumed to be meson-exchange saturated, are described by constant contact terms which are resummed to generate poles. It turns out that if a system is attractive near threshold by the light meson exchange, there is a pole close to threshold corresponding to a bound state or a virtual state, depending on the strength of interaction and the cutoff. In total, 229 molecular states are predicted. The observed near-threshold structures with hidden-charm, like the famous X(3872) and Pc states, fit into the spectrum we obtain. We also highlight a  ΛcΛc  bound state that has a pole consistent with the cross section of the e+e- ΛcΛc  precisely measured by the BESIII Collaboration.

    Related Articles | Metrics
    Progress in Physics    2014, 34 (2): 47-117.  
    Abstract900)      PDF (9236KB)(10505)      
    Related Articles | Metrics
    Progress in Physics    2016, 36 (2): 35-45.  
    Abstract801)      PDF (3194KB)(2076)      
    Related Articles | Metrics
    A Brief History of Electronic Development
    SHI Feng , LIU Jin-hua , ZHANG Ling-cui , XU Yue , LOU You-xin , SHEN Yan , ZHAO Jin-bo
    Progress in Physics    2025, 45 (2): 79-104.   DOI: 10.13725/j.cnki.pip.2025.02.003
    Abstract269)      PDF (516KB)(747)      

    Electron is an inseparable part of atom. The ancients believed that atoms could not be divied, and it was not until the late 19th century that Thomson discovered the existence of electron, which proved that atom is redividable. After that, the complex and challenging journey to uncover the volatility of electrons, electron spin, and positrons led to groundbreaking discoveries, which resulted in numerous of Nobel Prizes were awarded in Physics. The discovery of electron played an important role in promoting the birth of quantum mechani. It was through the meticulous examination of atomic structure models that the scientists progressively ventured into the realms of quantum mechanics and quantum field theory. Similarly, electrons have played a positive role in promoting our understanding of various materials, leading to the development of to many theories, such as Lorentz’s free electron theory, Sommerfeld model, and band theory. Especially band theory has led to a revolution in modern electronic technology, ushering humanity into the information age. 

    Related Articles | Metrics
    Study of the Synthesis of Super Heavy Nuclei Based on Dinuclear System
    WANG Yi-peng, GUO Shu-qing, BAO Xiao-jun, DENG Jun-gang, ZHANG Hong-fei
    Progress in Physics    2021, 41 (4): 157-169.   DOI: 10.13725/j.cnki.pip.2021.04.001
    Abstract1009)      PDF (1138KB)(4063)      

    This review firstly introduces two low energy heavy ion reaction mechanisms. Then, based on these theories, we have developed a dinuclear system model describing the synthesis of super heavy nuclear. Different from Adamian’s calculation method, we solve the master equation numerically to describe the heavy ion fusion mechanism. This review chooses 1D to 3D different macroscopic degrees of freedom to illustrate the fusion of heavy ions, focusing on the development and evolution of the master equation during the fusion process, and providing a theoretical basis for further development of models and predictions of new nuclides in the future.

    Related Articles | Metrics
    Nonlinear Dynamics and Applications of Spin Hall Nano-Oscillators
    Liu Rong-Hua , Li Li-Yuan , Chen Li-Na , Zhou Kai-Yuan , Du You-Wei
    Progress in Physics    2020, 40 (6): 189-210.   DOI: 10.13725/j.cnki.pip.2020.06.003
    Abstract1856)      PDF (3549KB)(3707)      

    Spin Hall nano oscillator (SHNO), a new type spintronic nano-device, can generate microwave signal and excite coherent spin waves due to spin current-driven magnetization precession and have strong potential for applications from data storage,rf communication, microwave generation to neuromorphic computing. In this review, we focus on the complex nonlinear dynamic characteristics of spin-wave modes generated by SHNOs in the various ferromagnetic/nonmagnetic (FM/NM) bilayer systems with an extended free layer. Based on the abundantly previous experimental results obtained by combining microwave spectroscopy and micro-focused Brillouin light scattering techniques, as well as micromagnetic simulation, we detailedly describe and summarize the experimental parameters dependent magnetic dynamics of SHNOs with different device configurations and magnetic materials, such as in-plane nanogap-type, nanoconstriction-type, nanowire-type, vertical nanocontact-type SHNOs with in-plane or out-of-plane magnetization. Finally, we also discuss mutual synchronization of SHNO arrays and the potential applications in magnon-based logic devices with ultralow energy consumption and spin-based artificial neural network for neuromorphic computing in the field of artificial intelligence.

    Related Articles | Metrics
    A Brief History of Solid State Physics
    SHI Feng , HAN Xiu-jun , ZHANG Ling-cui , XU Yue , ZHANG Chuan-jiang
    Progress in Physics    2021, 41 (4): 170-187.   DOI: 10.13725/j.cnki.pip.2021.04.002
    Abstract3084)      PDF (446KB)(12475)      

    The study of many-body problems in solid-state physics is an important branch of physics, covering a wide range of areas, and it is also the basis of many technical disciplines including materials science. This article discusses the brief history of the development of solid state physics, including the initial development history, the study of thermal properties, Weidmann-Franz law, the study history of the microscopic geometric structure of crystals, the free electron gas model, the energy band theory of solids, and the The research of solid magnetism, the information age, the development of solid state physics in China, and the teaching materials of solid state physics, etc., briefly describe the major events in the development of solid state physics, and the influential scientists and their contributions.

    Related Articles | Metrics
    Research Progress on Two-Dimensional Multiferroic Materials and Their Magnetoelectric Properties
    ZHENG Hongqian , HU Ting , HUANG Chengxi , DU Yongping , WAN Yi
    Progress in Physics    2025, 45 (3): 105-.   DOI: 10.13725/j.cnki.pip.2025.03.001
    Abstract410)      PDF (9286KB)(825)      

    In recent years, multiferroic materials, which possess both ferromagnetic and ferroelectric properties, have attracted intense attention from researchers due to their novel and rich physical characteristics, as well as their broad potential applications in fields such as information storage and sensor technologies. As understanding of the properties of multiferroic materials deepens, researchers have begun to explore their behavior at smaller scales, particularly focusing on two-dimensional (2D) materials. Compared to three-dimensional (3D) materials, 2D materials, owing to their unique structural features and significant size effects, often exhibit more superior performance in terms of mechanical, optical, thermal, and magnetic properties. However, it is noteworthy that current research on 2D multiferroic materials is primarily concentrated on theoretical predictions, with experimental progress lagging behind. In this context, this paper first briefly reviews the development history of multiferroic materials, then elaborates on the characteristics and advantages of 2D materials, and discusses the potential applications of 2D multiferroic materials. Subsequently, the paper provides an overview of the current research status, covering related physical phenomena and mechanisms, experimental preparation methods, performance regulation technologies, and characterization techniques. Furthermore, this paper also enumerates potential 2D multiferroic materials predicted by theory and, based on this, delves into the challenges faced by current research and future directions for development. 

    Related Articles | Metrics
    Recent Progress in Ultrafast Spin Dynamics in Two-Dimensional van der Waals Antiferromagnets
    LI Jin-yang , WU Fang-liang , ZHANG Qi
    Progress in Physics    2024, 44 (6): 293-308.   DOI: 10.13725/j.cnki.pip.2024.06.003
    Abstract864)      PDF (4771KB)(1114)      

    Antiferromagnets exhibit high-speed spin responses in the terahertz frequency range and robustness against external magnetic fields, making them promising for nextgeneration high-speed, high-density spintronic devices. Recently, two-dimensional van der Waals magnetic systems, which possess rich antiferromagnetic ground states, have gained significant attention and serve as ideal platforms for studying low-dimensional antiferromagnetic physics. Detecting and controlling ultrafast spin dynamics in two-dimensional antiferromagnetic systems will lay the foundation for high-speed spintronic device applications. Antiferromagnets have no net macroscopic magnetization, making traditional optical methods, such as magneto-optical effects, challenging for detecting antiferromagnetic order in equilibrium states. However, in non-equilibrium states, the instantaneous magnetization generated by antiferromagnetic spin dynamics allows the use of time-resolved magneto-optical Kerr effect to detect coherent spin precession in antiferromagnets. Additionally, techniques such as linear dichroism spectroscopy, terahertz emission spectroscopy, and second harmonic generation have been employed in studying the dynamics of two-dimensional antiferromagnets. This paper introduces recent experimental progress on ultrafast spin dynamics in two-dimensional van der Waals antiferromagnetic systems, and briefly describes the coherent magnon excitations and corresponding mechanisms in two-dimensional antiferromagnets, including inverse magneto-optical effects/stimulated Raman scattering, orbital excitations, and exciton coupling. Furthermore, this paper discusses the critical slowing down of spin dynamics due to spin-lattice coupling effects and the amplification of coherent acoustic phonons.

    Related Articles | Metrics
    Halide Perovskite Single Crystals and Photodetectors: Research Progress and Challenges 
    SUN Yue, HUANG Xiao-rui , HE Sheng-rong, XING Jun
    Progress in Physics    2024, 44 (5): 209-242.   DOI: 10.13725/j.cnki.pip.2024.05.001
    Abstract1624)      PDF (15745KB)(1610)      

    In recent years, metal halide perovskite materials have made great scientific progress in the field of light detection, photoelectric conversion, and light emission due to their excellent optical and electrical properties (such as high absorption coefficient, long carrier diffusion length, small exciton binding energy, high defect tolerance, and adjustable band gap, etc.), and low-cost solution preparation process. In recent decades, scientific research on the preparation and optimization of perovskite single crystals has been promoted driven by their advantages compared to polycrystalline perovskite films. These advantages include longer carrier lifetime, higher carrier mobility, longer diffusion length, and lower trap density. High-quality halide perovskite single crystals have been widely used in important applications such as photodetection. This review focuses on the recent advancements in photodetector technology using various forms and chemical compositions of halide perovskite single crystals, including single crystal bulks and single crystal thin films. Firstly, we systematically review the preparation and optimization progress of halide perovskite single crystals, with a focus on the latest progress in triple cations hybrid perovskite single crystals. After that, a comprehensive introduction was given to the research status of various types of photodetectors based on perovskite single crystals. Finally, the current challenges and future development prospects in the research field of halide perovskite single crystal photodetector are summarized in order to promote rapid progress and development in this field.

    Related Articles | Metrics
    Progress in Physics    2016, 36 (6): 157-201.  
    Abstract729)      PDF (2412KB)(1988)      
    Related Articles | Metrics
    Progress in Physics    2012, 32 (2): 57-59.  
    Abstract582)      PDF (5636KB)(4642)      
    Related Articles | Metrics
    The exotic electronic properties of the topological Kondo insulator SmB 6
    ZHAO Gan, ZHANG Ming-yuan, WANG Jia-min, ZHANG Wang, MIAO Lin
    Progress in Physics    2021, 41 (6): 231-.   DOI: 10.13725/j.cnki.pip.2021.06.001
    Abstract1430)      PDF (9363KB)(6002)      

    The topological Kondo insulator (TKI) is an intrinsic electronic correlated topological system in which the bulk bandgap is originated from the Kondo correlation. Since the theoretical idea of TKI was proposed in 2010, SmB6 was predicted to be the first candidate topological Kondo insulator. In the last decade, SmB6 was investigated extensively by various experimental methods, and the accumulated evidence confirmed that SmB6 is a topological Kondo insulator. This review article presented some key experimental evidence, including electronic transportation measurements, ARPES study of low-energy band structure, and STM characterization of the surface. We also discussed how these experimental results establish the topological narrative of SmB6. Meanwhile, some extremely exotic properties like the 3D quantum oscillations and the bulk-surface valence seperation of SmB6 are exhibited. The related physical origin is still unknown and needs extra efforts to unveil the underlying physics.

    Related Articles | Metrics
    Two-Dimensional Transistors beyond Silicon Counterparts: From Theory to Experiment
    LI Hong , XU Lin , QIU Chenguang , LU Jing
    Progress in Physics    2025, 45 (3): 118-131.   DOI: 10.13725/j.cnki.pip.2025.03.002
    Abstract219)      PDF (2085KB)(476)      

    Due to the severe short-channel effects, silicon-based transistors cannot work well when the gate length is shorter than 10 nm. Moore’s law is at risk of failure. Compared to bulk semiconductor materials, two-dimensional (2D) materials own better electrostatic features and higher carrier mobilities. To describe the transport properties of transistors at the nanometer scale, the first-principles quantum transport simulation based on density functional theory coupled with non-equilibrium Green’s function method is the most precise theoretical tool. The device performances of ideal 2D transistors are predicted to surpass those of silicon-based transistors based on the first-principles quantum transport simulation, which can meet the International Technology Roadmap for Semiconductors (ITRS) and International Roadmap for Device and Systems (IRDS) requirements for the next decade and extend Moore’s law to sub-10 nm gate lengths . We review dramatic experimental breakthroughs on 2D transistors in the recent two years, including shrinking the gate length to the Angstrom scale, descending the electrode contact resistance to the quantum limit, and fabricating high-quality and ultrathin dielectric. When Ohmic contacts and high-quality ultrathin dielectric layers are simultaneously realized, theoretically predicted superior performances beyond silicon are observed in 10-nmgate InSe transistors experimentally. 

    Related Articles | Metrics
    MAX phase:Synthesis, Structure and Property
    Tian Li, Fu Chao, Li Yue-Ming, Fan Xiao-Xing, Wang En-Ge, Zhao Guo-Rui
    Progress in Physics    2021, 41 (1): 39-61.   DOI: 10.13725/j.cnki.pip.2021.01.002
    Abstract2848)      PDF (26993KB)(2212)      
    MAX phase ceramics have a unique crystal structure in which MX sheets and A-element layers are alternately stacked, so that it has both the excellent characteristics of metal and ceramics. They exhibit high electrical and thermal conductivities, and are machinable. And at the same time, they are resistant to oxidation and corrosion, and elastic stiff. They are attracting more and more attention in the past 20 years with their potential widely applications. In this paper, some research work on MAX phase and MXenes materials are reviewed. Firstly, recent discoveries on the newly MAX phases and their preparation method are introduced. Then, from the physical-property perspective, the research progress on the elastic, electrical, thermal and magnetic properties and radiation resistance of typical MAX phases is reviewed. In addition, a further introduction of MXene, which is a two-dimensional derivative of MAX phases, and its synthesis, characterization, properties and its application in electrochemical energy storage and in catalysis is presented. Finally, important future research directions are discussed. These include charting the unknown regions in phase diagrams to discover new MAX phases, exploring their unknown special physical properties, studying 2D derivative MXene, as well as researching their synthesis, characterization, and potential applications.
    Related Articles | Metrics
    Hydrogen-Based Superconductors under High Pressures
    DU Ming-yang, ZHANG Zi-han, DUAN De-fang, CUI Tian
    Progress in Physics    2022, 42 (5): 184-192.   DOI: 10.13725/j.cnki.pip.2022.05.002
    Abstract1372)      PDF (3042KB)(3413)      

    Achieving room temperature superconductivity has always been the dream of mankind pursuing for a long time. Finding and synthesizing new materials with room temperature superconductivity is the ”Holy Grail” of condensed matter physics. Since the theoretical and experimental discovery of H3S and LaH10 with high superconducting critical temperature above 200 K, the hydrogen-based superconductors became the best candidate for achieving room temperature superconductivity, which is also one of the hot areas of multi-disciplinary research in physics, materials science etc. In this work, we outline the development history of superconductors, introduce several typical superconducting materials, focus on the current progress and challenges of hydrogen based superconductors under high pressures, discuss the design ideas of hydrogen based high-temperature superconductors in the middle and low pressure range, and look forward to the possibility of hydrogen-based superconductors with high critical temperature and even room temperature under low pressure or ambient pressure.

    Related Articles | Metrics
    Progress in Physics    2017, 37 (1): 1-12.  
    Abstract653)      PDF (1988KB)(1222)      
    Related Articles | Metrics
    Spin Hall Effect of Light and Its Applications in Measurements of Physical Parameters
    LIU Shuo-qing , CHEN Shi-zhen , LUO Hai-lu
    Progress in Physics    2022, 42 (2): 35-53.   DOI: 10.13725/j.cnki.pip.2022.02.001
    Abstract2776)      PDF (8674KB)(6204)      
    The spin Hall effect (SHE) of light refers to the transverse spin-dependent splitting of photons with opposite spin angular momentum after the beam passes through inhomogeneous media, in the direction perpendicular to the incident plane. It can be regarded as an analogue of the SHE in electronic systems, where the spin photons and the refractive index gradient replace the spin electrons and the electronic potential, respectively. Fundamentally, the SHE of light originates from the spin-orbit interaction of photons and depends mainly on two different geometric phases, namely, the spin redirection Rytov-Vlasimirskii-Berry phase in the momentum space and the Pancharatnam-Berry phase in the Stokes parameter space. Meanwhile, the SHE of light exhibits great sensitivity to the physical parameters, and combined with quantum weak measurements, has important application prospects in fields of physical parameters measurement and optical sensing. We briefly analyze the physical origin of the SHE of light, review its recent progress in different physical systems, and present its applications in measurements of physical parameters. Finally, the possible developing trends in optical analog computing, microscopy imaging, and quantum imaging are discussed.
    Related Articles | Metrics