Most Down Articles

    Published in last 1 year | In last 2 years| In last 3 years| All| Most Downloaded in Recent Month | Most Downloaded in Recent Year|

    In last 2 years
    Please wait a minute...
    For Selected: Toggle Thumbnails
    Research Progress on Single-Mode Regulation Methods for Whispering Gallery Mode Microcavities
    LIU Shuo, WANG Yu-chen, WANG Xiu-hua, HOU Rui
    Progress in Physics    2023, 43 (4): 117-130.   DOI: 10.13725/j.cnki.pip.2023.04.002
    Abstract859)      PDF (483KB)(3173)      

    Whispering gallery mode (WGM) microcavities have attracted wide attention due to their small mode volume, ultra-high Q value, and low threshold. However, in rotationally symmetric WGM microcavities, multiple longitudinal mode laser radiation can be generated, and the directionality of the radiation is poor, which limits its practical applications. Finding effective methods to achieve single-mode radiation of WGM lasers is a key issue for microcavity lasers to move toward practical applications. This review focuses on several methods of single-mode modulation of WGM lasing in recent years, including reducing cavity size, adding mode selection structure, based on the vernier effect, parity-time symmetry breaking, deformed microcavity, etc. This review aims to provide a reference for researchers in related fields and deepen their understanding of the physical mechanism of single-mode modulation of WGM lasing.

    Related Articles | Metrics
    Halide Perovskite Single Crystals and Photodetectors: Research Progress and Challenges 
    SUN Yue, HUANG Xiao-rui , HE Sheng-rong, XING Jun
    Progress in Physics    2024, 44 (5): 209-242.   DOI: 10.13725/j.cnki.pip.2024.05.001
    Abstract1611)      PDF (15745KB)(1589)      

    In recent years, metal halide perovskite materials have made great scientific progress in the field of light detection, photoelectric conversion, and light emission due to their excellent optical and electrical properties (such as high absorption coefficient, long carrier diffusion length, small exciton binding energy, high defect tolerance, and adjustable band gap, etc.), and low-cost solution preparation process. In recent decades, scientific research on the preparation and optimization of perovskite single crystals has been promoted driven by their advantages compared to polycrystalline perovskite films. These advantages include longer carrier lifetime, higher carrier mobility, longer diffusion length, and lower trap density. High-quality halide perovskite single crystals have been widely used in important applications such as photodetection. This review focuses on the recent advancements in photodetector technology using various forms and chemical compositions of halide perovskite single crystals, including single crystal bulks and single crystal thin films. Firstly, we systematically review the preparation and optimization progress of halide perovskite single crystals, with a focus on the latest progress in triple cations hybrid perovskite single crystals. After that, a comprehensive introduction was given to the research status of various types of photodetectors based on perovskite single crystals. Finally, the current challenges and future development prospects in the research field of halide perovskite single crystal photodetector are summarized in order to promote rapid progress and development in this field.

    Related Articles | Metrics
    Self-trapped Excitons in Metal Halide Perovskites 
    ZHANG Qin-kai , WANG Yu-xiao , ZHANG Chun-feng
    Progress in Physics    2023, 43 (6): 161-177.   DOI: 10.13725/j.cnki.pip.2023.06.001
    Abstract1263)      PDF (9908KB)(1415)      

    In polar crystals, excited electron-hole pairs can be captured by the deformation potential field created by lattice distortion upon photoexcitation, due to strong electron-phonon interactions, thereby forming self-trapped excitons. Metal halide perovskites are semiconductors that display efficient self-trapped exciton luminescence in various systems due to their ionic crystal nature with strong electron-phonon interactions and a deformable lattice. Consequently, they are considered ideal for creating high-quality white light sources. However, the understanding of the self-trapped exciton luminescence mechanism in metal halide perovskites is still relatively scarce and lags far behind the development of devices. To this end, this paper summarizes the recent research progress on the formation conditions, formation mechanism and related excited state dynamics of self-trapped excitons in metal halide perovskites semiconductors from the perspective of the fundamental physics of self-trapped excitons, and gives an outlook on the future research based on the self-trapped exciton mechanism in this system, so as to provide a clearer physical image for the study of self-trapped excitons in this system

    Related Articles | Metrics
    Environmental Stability of 2D Transition Metal Dichalcogenides
    ZHOU Zhen-jia , XU Jie , GAO Li-bo
    Progress in Physics    2023, 43 (4): 97-116.   DOI: 10.13725/j.cnki.pip.2023.04.001
    Abstract1069)      PDF (837KB)(1242)      

    Two-dimensional (2D) transition metal dichalcogenides (TMDCs) with a unique unity of favorable electronic and mechanical properties have been developed for fundamental studies and applications in electronics, spintronics, optoelectronics, energy harvesting and catalysis. However, as they are unstable under harsh conditions, and prone to degradation in the ambient environment, most TMDCs applications are limited. In this review, we analyze the recent advances in the research of environmental stability in TMDCs, covering the latest growth methods, the fundamental mechanisms for stability and kinds of routes to protect 2D TMDCs materials from aging and deterioration. By analyzing key factors that affect TMDCs stability from the growth process, we present a short review of optimizing growth methods for improving the stability of TMDCs. Finally, by providing insights into existing factors, this review is expected to guide the growth of stable TMDCs, which could lead to a new potential approach to growing advanced materials and designing more unexplored heterostructures. 

    Related Articles | Metrics
    Research Progress on the Regulation of Metal-Site Bismuth Doping in Halide Perovskites
    HUANG Xiao-rui, SUN Yue, HE Sheng-rong, XING Jun
    Progress in Physics    2024, 44 (2): 73-95.   DOI: 10.13725/j.cnki.pip.2024.02.002
    Abstract995)      PDF (8816KB)(1228)      
    Related Articles | Metrics
    The Research Progress on One-Dimensional Spin-Orbit Coupled Fermi Gas
    CAI Qi-peng, ZHANG Wei-wei, LIN Liang-wei, XU Yi-guang, CHEN Zi-xuan, WANG Xiao-sheng, YU Hai-peng, FANG Xiao-hong, ZHANG Yi-cai, LIU Chao-fei
    Progress in Physics    2024, 44 (4): 157-182.   DOI: 10.13725/j.cnki.pip.2024.04.001
    Abstract614)      PDF (3164KB)(1137)      

    In ultracold Fermi gases, by adjusting the strength of spin orbit coupling to match Fermi energy, many novel quantum effects can be generated. In the past few decades, scholars have conducted extensive theoretical and experimental research on Fermi gases induced by one-dimensional spin orbit coupling. Compared with high-dimensional spin orbit coupling, one-dimensional spin orbit coupling, although relatively simple, is the most reliable and feasible tool for exploring basic quantum physical phenomena in experiments. This paper systematically summarizes the interesting physical phenomena of Fermi gas under one-dimensional spin orbit coupling in theoretical work. Including theoretical research on dynamic oscillation and soliton effect, topological superfluid, Majorana edge state, ferromagnetic phase transition, and quantum phase. How to achieve spin orbit coupling and observe singular phenomena in experiments is a hot and difficult research topic. We summarize several common experimental schemes and detection methods. Finally, we look forward to the research on Fermi gas induced by one-dimensional spin orbit coupling. One dimensional spin orbit coupling can provide reference for abecedarians and contribute to the study of multi body system regulated by spin orbit coupling. This paper aims to provide a reference for abecedarians in cold atomic physics to gain a deeper understanding of the physical mechanisms of multi-body systems under spin orbit coupling.

    Related Articles | Metrics
    Recent Progress in Ultrafast Spin Dynamics in Two-Dimensional van der Waals Antiferromagnets
    LI Jin-yang , WU Fang-liang , ZHANG Qi
    Progress in Physics    2024, 44 (6): 293-308.   DOI: 10.13725/j.cnki.pip.2024.06.003
    Abstract861)      PDF (4771KB)(1105)      

    Antiferromagnets exhibit high-speed spin responses in the terahertz frequency range and robustness against external magnetic fields, making them promising for nextgeneration high-speed, high-density spintronic devices. Recently, two-dimensional van der Waals magnetic systems, which possess rich antiferromagnetic ground states, have gained significant attention and serve as ideal platforms for studying low-dimensional antiferromagnetic physics. Detecting and controlling ultrafast spin dynamics in two-dimensional antiferromagnetic systems will lay the foundation for high-speed spintronic device applications. Antiferromagnets have no net macroscopic magnetization, making traditional optical methods, such as magneto-optical effects, challenging for detecting antiferromagnetic order in equilibrium states. However, in non-equilibrium states, the instantaneous magnetization generated by antiferromagnetic spin dynamics allows the use of time-resolved magneto-optical Kerr effect to detect coherent spin precession in antiferromagnets. Additionally, techniques such as linear dichroism spectroscopy, terahertz emission spectroscopy, and second harmonic generation have been employed in studying the dynamics of two-dimensional antiferromagnets. This paper introduces recent experimental progress on ultrafast spin dynamics in two-dimensional van der Waals antiferromagnetic systems, and briefly describes the coherent magnon excitations and corresponding mechanisms in two-dimensional antiferromagnets, including inverse magneto-optical effects/stimulated Raman scattering, orbital excitations, and exciton coupling. Furthermore, this paper discusses the critical slowing down of spin dynamics due to spin-lattice coupling effects and the amplification of coherent acoustic phonons.

    Related Articles | Metrics
    Attractor Dynamics in Spatial Cognition
    WANG Zi-qun , WANG Tao , LIU Feng
    Progress in Physics    2023, 43 (6): 188-201.   DOI: 10.13725/j.cnki.pip.2023.06.003
    Abstract845)      PDF (3411KB)(1093)      

    The mammalian navigation system comprises various kinds of neurons responsible for position perception and spatial path planning, involving the integration of multiple information sources. As a unified brain theory capable of providing explanations for complex cognitive functions like memory and decision-making, the theory of attractor dynamics can elucidate the firing dynamics of neurons and path integration in the navigation system. This review describes recent advances in attractor dynamics in spatial cognition. First, it provides a brief overview of computational neuroscience and the general theory of attractor dynamics. Subsequently, focusing on the continuous attractor dynamics, it delves into the dynamical characteristics and functional significance of head direction cells and grid cells. Finally, an extension and prospects of the attractor theory for spatial cognition are presented.

    Related Articles | Metrics
    Perovskite Solar Cells Stability Factors And Encapsulaiton For Performance Enhancement
    DAI Jiaqi, ZHANG Dong, WU Xiaoshan
    Progress in Physics    2024, 44 (1): 19-48.   DOI: 10.13725/j.cnki.pip.2024.01.003
    Abstract2088)      PDF (5083KB)(1089)      

    Perovskite solar cells, which are considered the third generation of new concept solar cells, are known for their high photoelectric conversion efficiency, low cost, and flexible processing advantages, and have been rapidly development in recent years. its photoelectric conversion efficiency is gradually comparable to that of silicon cells and has been close to the level required for industrial applications. However, the main problem with the industrial application of perovskite solar cells is their stability. Researchers need to solve the biggest problem of how to maintain high efficiency for a long time in perovskite solar cells. Encapsulation is currently being widely studied as a solution to the external stability issue of perovskite solar cells. A good encapsulation can not only solve the stability problem of the device but also ensure the safety of the device and extend the service life. The stability of perovskite solar cells and the conditions for testing it are briefly described in this paper. In the end, the various encapsulation structures, techniques, and materials for perovskite solar cells are explained. The continuous advancement of encapsulation research will lead researchers to optimize and solve existing problems, leading to the eventual industrialization of perovskite solar cells on a large scale. 

    Related Articles | Metrics
    Wave Velocity Measurement and Modulation of Surface Acoustic Waves in Piezoelectric Materials 
    WANG Ren-fei, LIU Xiao, WU Meng-meng, LIN Xi, LIU Yang
    Progress in Physics    2024, 44 (3): 103-111.   DOI: 10.13725/j.cnki.pip.2024.03.001
    Abstract714)      PDF (4278KB)(930)      

    In addition to the well-known conventional acoustic wave propagation mode in three-dimensional solids, there exists the surface acoustic wave propagation mode where energy is only concentrated near the two-dimensional interface. In this work, utilizing the piezoelectric and inverse piezoelectric effects from GaAs substrates, we achieve the conversion between radiofrequency electromagnetic waves and surface acoustic waves with planar interdigital transducers, and successfully measure the surface acoustic wave velocity on a sample with a dimension of only 4 mm using superheterodyne-scheme lock-in technique, yielding a result of (2.9±0.1) km/s. We also fabricate a uniaxial stress cell with piezoelectric ceramics, capable of applying uniaxial strains up to approximately 10−4 to the sample, and observe the influence of strain on the surface acoustic wave velocity. We measure the surface acoustic wave velocity of the important semiconductor GaAs under stress, demonstrating the capability of this velocity measurement technique to probe the internal mechanical properties of solids in situ. The wave velocity measurements based on planar interdigital transducers overcome the macroscopic size requirements of traditional time-of-flight and standing wave methods. The superheterodyne-scheme lock-in technique established in this article has replaced the commercial vector network analyzers for measuring surface acoustic wave velocity, enabling possible future applications with low power input and high phase stability. As the measurement setup can also be used for experimental teaching related to solid-state physics, this work provides detailed parameters and fabrication processes for surface acoustic wave devices and homemade stress cell.

    Related Articles | Metrics
    Working Memory: Mechanisms and Modeling Approaches
    YANG Fan, QIAN Rui-xin, WANG Tao
    Progress in Physics    2024, 44 (5): 243-258.   DOI: 10.13725/j.cnki.pip.2024.05.002
    Abstract703)      PDF (2967KB)(921)      

    Working memory, a cornerstone of human cognition, allows us to temporarily hold and manipulate information. The delayed response experiment is a fundamental tool for understanding working memory. By inserting a delay between the presentation of stimuli and the behavioral decision, researchers can probe the neural mechanisms underlying information maintenance and manipulation during this delay period. This review delves into the delayed response paradigm and introduces attractor dynamics as a potential mechanism for working memory function. We then systematically explore two common methods for analyzing working memory networks: trajectory tracking, and energy landscape and flux theory. Finally, we summarize the key features of these two dynamical approaches and provide an outlook for future directions of working memory research.

    Related Articles | Metrics
    Progress on High-Pressure Structure and Properties of Phosphorus and Phosphide
    HUANG Ye-hua, GUO Zhen-yuan, LI Jun-kai, YANG Xin, GOU Hui-yang
    Progress in Physics    2024, 44 (3): 123-135.   DOI: 10.13725/j.cnki.pip.2024.03.003
    Abstract663)      PDF (6131KB)(919)      

    Phosphorus,a group V non-metallic element, exhibits a unique electronic structure along with excellent optical, electrical and mechanical properties, and has a wide range of application prospects. Recent studies have demonstrated that phosphorus and phosphides are easily affected and regulated by external fields and have rich physical and chemical properties under high pressure. In addition, the unique structure and electronic properties of phosphorus and phosphides give them many physical properties that differ from those of traditional materials. Therefore, the use of high pressure to induce structural transformation and superconducting transformation in phosphorus and phosphides has become the focus of high-pressure research. In this paper, the structural, electrical, and optical responses of black phosphorus, germanium phosphide, and arsenic phosphide under high-pressure conditions are reviewed and discussed. Furthermore, we also explore the structure-activity relationships between the structures and physical properties and forecast the future research directions of phosphides under high pressure.

    Related Articles | Metrics
    Progress in First-Principles Methods for Simulation of Warm Dense Matter
    ZHANG Hang, CHEN Mo-han
    Progress in Physics    2024, 44 (2): 49-72.   DOI: 10.13725/j.cnki.pip.2024.02.001
    Abstract994)      PDF (2466KB)(855)      
    Warm Dense Matter (WDM) represents a transitional state of matter situated between condensed matter and plasma, emerging as a cutting-edge research direction within the realms of planetary physics, laboratory astrophysics, and inertial confinement fusion in the field of high-energy density physics. WDM is characterized by significant quantum effects, partial ionization, strong coupling, electron degeneracy, and thermal effects, necessitating a description based on fundamental quantum mechanical theories. In recent years, simulations and calculations based on quantum mechanics’ first principles have rapidly advanced, increasingly becoming an effective tool for a deeper understanding of WDM properties. On one hand, applying First Principles widely used in condensed matter physics and materials science to WDM poses considerable challenges, especially under extreme conditions such as broad temperature ranges and high pressures, which require continuous improvements to existing first-principle algorithms and software. On the other hand, the rapid development of machine learning-based molecular dynamics methods offers new tools for simulating WDM. In this review, we initially revisit traditional first principles applicable to WDM simulations, including Kohn-Sham Density Functional Theory and Orbital-free Density Functional Theory. Subsequently, we introduce newly developed methods and software, such as Extended First Principles Molecular Dynamics and Stochastic Density Functional Theory, the latter of which has been implemented in the domestically developed open-source density functional theory software, Atomic-orbital Based Ab-initio Computation at UStc (ABACUS). These innovative approaches significantly boost the computational scale and efficiency of WDM studies, thereby elevating the precision of structural, dynamical, and transport coefficient calculations related to WDM
    Related Articles | Metrics
    Research Progress on Two-Dimensional Multiferroic Materials and Their Magnetoelectric Properties
    ZHENG Hongqian , HU Ting , HUANG Chengxi , DU Yongping , WAN Yi
    Progress in Physics    2025, 45 (3): 105-.   DOI: 10.13725/j.cnki.pip.2025.03.001
    Abstract402)      PDF (9286KB)(802)      

    In recent years, multiferroic materials, which possess both ferromagnetic and ferroelectric properties, have attracted intense attention from researchers due to their novel and rich physical characteristics, as well as their broad potential applications in fields such as information storage and sensor technologies. As understanding of the properties of multiferroic materials deepens, researchers have begun to explore their behavior at smaller scales, particularly focusing on two-dimensional (2D) materials. Compared to three-dimensional (3D) materials, 2D materials, owing to their unique structural features and significant size effects, often exhibit more superior performance in terms of mechanical, optical, thermal, and magnetic properties. However, it is noteworthy that current research on 2D multiferroic materials is primarily concentrated on theoretical predictions, with experimental progress lagging behind. In this context, this paper first briefly reviews the development history of multiferroic materials, then elaborates on the characteristics and advantages of 2D materials, and discusses the potential applications of 2D multiferroic materials. Subsequently, the paper provides an overview of the current research status, covering related physical phenomena and mechanisms, experimental preparation methods, performance regulation technologies, and characterization techniques. Furthermore, this paper also enumerates potential 2D multiferroic materials predicted by theory and, based on this, delves into the challenges faced by current research and future directions for development. 

    Related Articles | Metrics
    Theoretical Insights into the Triplet-Pair State of Singlet Fissio
    TONG Lei, ZHANG Chun-feng
    Progress in Physics    2024, 44 (3): 112-122.   DOI: 10.13725/j.cnki.pip.2024.03.002
    Abstract853)      PDF (1708KB)(776)      

    Singlet fission is a photophysical process in organic materials where a photoexcited singlet exciton splits into two triplet excitons. This process has gained a lot of interest in the past decade for enhancing the efficiency of photovoltaic conversion. Precious work identified a crucial intermediate state in singlet fission, and the construction of the wave function for this correlated triplet-pair state poses a significant challenge. This article serves as a comprehensive introduction to theoretical models designed for constructing the wave function of the correlated triplet-pair. Subsequently, we delve into an exploration of the intricate effects of vibrational, orbital, and spin interactions on the formation and dissociation of the intermediate state. Finally, we conclude with a succinct summary of the challenges anticipated to shape the landscape of future theoretical research in this field.

    Related Articles | Metrics
    Low-Frequency Raman Detection of Antiferromagnetic Spin Waves in Cr 2O 3
    Dong Biao , CUI Jun , TIAN Yuan-zhe , WU Di , ZHANG Qi
    Progress in Physics    2023, 43 (5): 142-150.   DOI: 10.13725/j.cnki.pip.2023.05.002
    Abstract1006)      PDF (4272KB)(759)      

    The antiferromagnetic (AFM) spin waves are promising for being utilized in highspeed and energy-efficient information processing. However, the excitation and detection of terahertz spin waves in AFM systems is challenging. Here, we demonstrate low-frequency Raman spectroscopy as a powerful tool for spin-wave detection in AFM systems. We present a systematic study of AFM magnons in Cr2O3, a prototypical uniaxial antiferromagnet, via Raman measurements down to 2.3 cm−1 (69 GHz). We resolved the magnon Zeeman splitting and the spin-flop transition. We further determined the sign of angular momentum of the magnon branches via polarization-resolved Raman processes. We also obtained the anisotropy energy, the g-factor, and the spin-flop field of Cr2O3 as a function of temperatures and magnetic fields. A spin-wave renormalization theory accounts for all experimental observations. 

    Related Articles | Metrics
    Progress in Thin-Layer Quantization
    WANG Yonglong, DU Long
    Progress in Physics    2024, 44 (1): 9-18.   DOI: 10.13725/j.cnki.pip.2024.01.002
    Abstract616)      PDF (4146KB)(706)      

    With the rapid development of microtechnology, the low-dimensional materials are fabricated with nontrivial topological structures, and then the action of geometric properties on the effective dynamics receives increasing attention. It is an effective theory that the quantum mechanics of low-dimensional curved systems can be given by using the thin-layer quantization approach, in which the geometric potential and the geometric momentum have been demonstrated experimentally. In the present paper, the thin-layer quantization formalism is first recalled, its fundamental calculation framework is first clarified, and the geometric quantum effects result from the diffeomorphism transformation and the rotation transformation connecting the local frames of different points. The results are helpful to understand the gravitational gauge and emerging gauge, and to image the geometries implied in the artificial gauge. In the particular quantum systems, the novel physical phenomena are briefly recalled that are induced by geometry, such as resonation tunneling, quantum block, quantum Hall effect, quantum Hall viscosity, quantum spin Hall effect, effective monopole magnetic field and so on. The results will shed light from a different angle on the relationships between the geometry and the novel physical phenomenon.

    Related Articles | Metrics
    Phase Transition in Black Phosphorus Induced by Thermal Driven Diffusion of Metal
    CAO Tianjun , SHAN Junjie , WANG Gang, LIN Junhao, LIANG Shijun, MIAO Feng
    Progress in Physics    2024, 44 (1): 1-8.   DOI: 10.13725/j.cnki.pip.2024.01.001
    Abstract770)      PDF (6736KB)(700)      

    Two-dimensional (2D) materials are atomically flat and can be stacked into van der Waals heterostructures, as well as contain abundant physical phenomena and excellent electrical properties. The study of phase transition behavior of 2D materials has been the frontier of condensed matter physics and materials science. In our study, the stage-controlled phase transition induced by thermal-driven metal diffusion in black phosphorus (BP) is realized for the first time. Through thermal annealing treatment of the BP-In interface, the phase transition phenomenon from BP pure phase to BP/InP mixed phase and then to InP pure phase is observed. Combined with the characterization techniques of transmission electron microscopy and Raman spectroscopy, the mechanism responsible for phase transition is deeply analyzed, revealing that the thermal-driven metal diffusion behavior in BP-In is the main inducement of phase transition. The two key threshold temperatures (initiation of phase transition and transformation of pure phase) during the stepwise phase transition are obtained by manipulating the two degrees of freedom (temperature and time) which affect the energy supply in the thermal driving, where are 300 and 350 °C , respectively. This study provides more possibilities for expanding the applications of BP-based electronic and optoelectronic devices. 

    Related Articles | Metrics
    A Brief History of Electronic Development
    SHI Feng , LIU Jin-hua , ZHANG Ling-cui , XU Yue , LOU You-xin , SHEN Yan , ZHAO Jin-bo
    Progress in Physics    2025, 45 (2): 79-104.   DOI: 10.13725/j.cnki.pip.2025.02.003
    Abstract268)      PDF (516KB)(685)      

    Electron is an inseparable part of atom. The ancients believed that atoms could not be divied, and it was not until the late 19th century that Thomson discovered the existence of electron, which proved that atom is redividable. After that, the complex and challenging journey to uncover the volatility of electrons, electron spin, and positrons led to groundbreaking discoveries, which resulted in numerous of Nobel Prizes were awarded in Physics. The discovery of electron played an important role in promoting the birth of quantum mechani. It was through the meticulous examination of atomic structure models that the scientists progressively ventured into the realms of quantum mechanics and quantum field theory. Similarly, electrons have played a positive role in promoting our understanding of various materials, leading to the development of to many theories, such as Lorentz’s free electron theory, Sommerfeld model, and band theory. Especially band theory has led to a revolution in modern electronic technology, ushering humanity into the information age. 

    Related Articles | Metrics
    Image Sensor Based on Halide Perovskite
    ZHANG Qiang, DONG Hao-tian, BAO Chun-xiong
    Progress in Physics    2024, 44 (6): 278-292.   DOI: 10.13725/j.cnki.pip.2024.06.002
    Abstract747)      PDF (5446KB)(588)      

    Image sensors have extensive applications in both industrial and everyday settings. For example, X-ray sensors are widely used in medical imaging and security screening; visible light sensors are essential in facial recognition and smart devices; near-infrared sensors are crucial for biometric identification. Currently, these image sensors mainly utilize photodetectors based on silicon, germanium, or III-V group semiconductors. However, these sensors exhibit certain limitations, such as low light utilization efficiency in color image sensors and the occurrence of moiré patterns. Metal halide perovskites have emerged as a promising material for high-performance photodetectors due to their excellent optoelectronic properties, including high light absorption coefficients, tunable bandgaps, and high defect tolerance. This review summarizes the research advancements in image sensors based on metal halide perovskites, evaluates the current performance gap between these sensors and commercial devices, and suggests potential improvements to bridge this gap.

    Related Articles | Metrics