Loading...

Table of Content

    20 April 2025, Volume 45 Issue 3 Previous Issue   

    For Selected: Toggle Thumbnails
    Research Progress on Two-Dimensional Multiferroic Materials and Their Magnetoelectric Properties
    ZHENG Hongqian , HU Ting , HUANG Chengxi , DU Yongping , WAN Yi
    2025, 45 (3):  105.  doi: 10.13725/j.cnki.pip.2025.03.001
    PDF (9286KB) ( 44 )  

    In recent years, multiferroic materials, which possess both ferromagnetic and ferroelectric properties, have attracted intense attention from researchers due to their novel and rich physical characteristics, as well as their broad potential applications in fields such as information storage and sensor technologies. As understanding of the properties of multiferroic materials deepens, researchers have begun to explore their behavior at smaller scales, particularly focusing on two-dimensional (2D) materials. Compared to three-dimensional (3D) materials, 2D materials, owing to their unique structural features and significant size effects, often exhibit more superior performance in terms of mechanical, optical, thermal, and magnetic properties. However, it is noteworthy that current research on 2D multiferroic materials is primarily concentrated on theoretical predictions, with experimental progress lagging behind. In this context, this paper first briefly reviews the development history of multiferroic materials, then elaborates on the characteristics and advantages of 2D materials, and discusses the potential applications of 2D multiferroic materials. Subsequently, the paper provides an overview of the current research status, covering related physical phenomena and mechanisms, experimental preparation methods, performance regulation technologies, and characterization techniques. Furthermore, this paper also enumerates potential 2D multiferroic materials predicted by theory and, based on this, delves into the challenges faced by current research and future directions for development. 

    Related Articles | Metrics
    Two-Dimensional Transistors beyond Silicon Counterparts: From Theory to Experiment
    LI Hong , XU Lin , QIU Chenguang , LU Jing
    2025, 45 (3):  118-131.  doi: 10.13725/j.cnki.pip.2025.03.002
    PDF (2085KB) ( 13 )  

    Due to the severe short-channel effects, silicon-based transistors cannot work well when the gate length is shorter than 10 nm. Moore’s law is at risk of failure. Compared to bulk semiconductor materials, two-dimensional (2D) materials own better electrostatic features and higher carrier mobilities. To describe the transport properties of transistors at the nanometer scale, the first-principles quantum transport simulation based on density functional theory coupled with non-equilibrium Green’s function method is the most precise theoretical tool. The device performances of ideal 2D transistors are predicted to surpass those of silicon-based transistors based on the first-principles quantum transport simulation, which can meet the International Technology Roadmap for Semiconductors (ITRS) and International Roadmap for Device and Systems (IRDS) requirements for the next decade and extend Moore’s law to sub-10 nm gate lengths . We review dramatic experimental breakthroughs on 2D transistors in the recent two years, including shrinking the gate length to the Angstrom scale, descending the electrode contact resistance to the quantum limit, and fabricating high-quality and ultrathin dielectric. When Ohmic contacts and high-quality ultrathin dielectric layers are simultaneously realized, theoretically predicted superior performances beyond silicon are observed in 10-nmgate InSe transistors experimentally. 

    Related Articles | Metrics
    Measurement methods of magnetic fields in laboratory astrophysics
    SHI Chuanqi , YUAN Dawei , ZHAO Gang
    2025, 45 (3):  151-159.  doi: 10.13725/j.cnki.pip.2025.03.004
    PDF (5979KB) ( 6 )  

    Magnetic fields are ubiquitous in the universe, such as Earth, Sun, supernova remnants, nebulae, giants, neutron stars, black holes and so on. Despite their widespread presence, there remain numerous unanswered questions about astronomical magnetic fields. For instance, how are initial magnetic fields generated? How do magnetic fields undergo amplification? With the advent of high-power, high-energy laser facilities, laboratory astrophysics provides a new method to the study of astrophysical problems in a controlled laboratory setting, where researchers recreate extreme physical conditions similar to those found in astrophysical objects or their surroundings. The benefits of this method include the short distance, activity, controlled condition and reproducibility. Under the scaling laws, laboratory plasmas can study the origin and amplification of astrophysical magnetic fields. Various measurement techniques are employed in current laboratory studies to assess magnetic fields, including magnetic probes, magnetic tapes, Zeeman effect, Faraday rotation, and proton radiography. Understanding the principles and characteristics of these diagnostic methods is essential in selecting the appropriate method for measuring magnetic fields in experiments. 

    Related Articles | Metrics