Highlights

    Please wait a minute...
    For Selected: Toggle Thumbnails
    Phase Transition in Black Phosphorus Induced by Thermal Driven Diffusion of Metal
    CAO Tianjun , SHAN Junjie , WANG Gang, LIN Junhao, LIANG Shijun, MIAO Feng
    Progress in Physics    2024, 44 (1): 1-8.   DOI: 10.13725/j.cnki.pip.2024.01.001
    Abstract138)      PDF (6736KB)(104)      

    Two-dimensional (2D) materials are atomically flat and can be stacked into van der Waals heterostructures, as well as contain abundant physical phenomena and excellent electrical properties. The study of phase transition behavior of 2D materials has been the frontier of condensed matter physics and materials science. In our study, the stage-controlled phase transition induced by thermal-driven metal diffusion in black phosphorus (BP) is realized for the first time. Through thermal annealing treatment of the BP-In interface, the phase transition phenomenon from BP pure phase to BP/InP mixed phase and then to InP pure phase is observed. Combined with the characterization techniques of transmission electron microscopy and Raman spectroscopy, the mechanism responsible for phase transition is deeply analyzed, revealing that the thermal-driven metal diffusion behavior in BP-In is the main inducement of phase transition. The two key threshold temperatures (initiation of phase transition and transformation of pure phase) during the stepwise phase transition are obtained by manipulating the two degrees of freedom (temperature and time) which affect the energy supply in the thermal driving, where are 300 and 350 °C , respectively. This study provides more possibilities for expanding the applications of BP-based electronic and optoelectronic devices. 

    Related Articles | Metrics
    Perovskite Solar Cells Stability Factors And Encapsulaiton For Performance Enhancement
    DAI Jiaqi, ZHANG Dong, WU Xiaoshan
    Progress in Physics    2024, 44 (1): 19-48.   DOI: 10.13725/j.cnki.pip.2024.01.003
    Abstract260)      PDF (5083KB)(193)      

    Perovskite solar cells, which are considered the third generation of new concept solar cells, are known for their high photoelectric conversion efficiency, low cost, and flexible processing advantages, and have been rapidly development in recent years. its photoelectric conversion efficiency is gradually comparable to that of silicon cells and has been close to the level required for industrial applications. However, the main problem with the industrial application of perovskite solar cells is their stability. Researchers need to solve the biggest problem of how to maintain high efficiency for a long time in perovskite solar cells. Encapsulation is currently being widely studied as a solution to the external stability issue of perovskite solar cells. A good encapsulation can not only solve the stability problem of the device but also ensure the safety of the device and extend the service life. The stability of perovskite solar cells and the conditions for testing it are briefly described in this paper. In the end, the various encapsulation structures, techniques, and materials for perovskite solar cells are explained. The continuous advancement of encapsulation research will lead researchers to optimize and solve existing problems, leading to the eventual industrialization of perovskite solar cells on a large scale. 

    Related Articles | Metrics
    Self-trapped Excitons in Metal Halide Perovskites 
    ZHANG Qin-kai , WANG Yu-xiao , ZHANG Chun-feng
    Progress in Physics    2023, 43 (6): 161-177.   DOI: 10.13725/j.cnki.pip.2023.06.001
    Abstract257)      PDF (9908KB)(292)      

    In polar crystals, excited electron-hole pairs can be captured by the deformation potential field created by lattice distortion upon photoexcitation, due to strong electron-phonon interactions, thereby forming self-trapped excitons. Metal halide perovskites are semiconductors that display efficient self-trapped exciton luminescence in various systems due to their ionic crystal nature with strong electron-phonon interactions and a deformable lattice. Consequently, they are considered ideal for creating high-quality white light sources. However, the understanding of the self-trapped exciton luminescence mechanism in metal halide perovskites is still relatively scarce and lags far behind the development of devices. To this end, this paper summarizes the recent research progress on the formation conditions, formation mechanism and related excited state dynamics of self-trapped excitons in metal halide perovskites semiconductors from the perspective of the fundamental physics of self-trapped excitons, and gives an outlook on the future research based on the self-trapped exciton mechanism in this system, so as to provide a clearer physical image for the study of self-trapped excitons in this system

    Related Articles | Metrics
    Attractor Dynamics in Spatial Cognition
    WANG Zi-qun , WANG Tao , LIU Feng
    Progress in Physics    2023, 43 (6): 188-201.   DOI: 10.13725/j.cnki.pip.2023.06.003
    Abstract203)      PDF (3411KB)(179)      

    The mammalian navigation system comprises various kinds of neurons responsible for position perception and spatial path planning, involving the integration of multiple information sources. As a unified brain theory capable of providing explanations for complex cognitive functions like memory and decision-making, the theory of attractor dynamics can elucidate the firing dynamics of neurons and path integration in the navigation system. This review describes recent advances in attractor dynamics in spatial cognition. First, it provides a brief overview of computational neuroscience and the general theory of attractor dynamics. Subsequently, focusing on the continuous attractor dynamics, it delves into the dynamical characteristics and functional significance of head direction cells and grid cells. Finally, an extension and prospects of the attractor theory for spatial cognition are presented.

    Related Articles | Metrics
    Vortex state in a nematic triplet superconductor
    YANG Miao-miao, XIANG Ke, WANG Da, WANG Qiang-hua
    Progress in Physics    2023, 43 (5): 131-141.   DOI: 10.13725/j.cnki.pip.2023.05.001
    Abstract244)      PDF (452KB)(244)      

    The discovery of nematic triplet superconductivity in doped topological insulators CuxBi2Se3 triggers interest in the identification of the d-vector of the triplet, which is related to the antinodal direction of the gap function and determines whether the superconductor is topological. We perform self-consistent analysis of the vortex state properties in a nematic spin-triplet px-wave superconductor. We first derive a Ginzburg-Landau theory to determine the shape of the vortex and vortex lattice. We find the spatial profile of the isolated vortex is elongated along the antinodal direction, and the vortex lattice is a distorted triangular lattice elongated along x, becoming square in the specific case of a small circular Fermi surface. Finally, we calculate the local density of states self-consistently for an isolated vortex and the vortex lattice using the microscopic Bogoliubov-de Gennes equation. We find that the profile of the local density of states at low in-gap energies is always elongated along the antinodal direction. Our findings are valuable for the experimental detection of the antinodal direction of the gap function in nematic triplet superconductors, and subsequently the identification of the topological character of the superconducting state as in CuxBi2Se3.

    Related Articles | Metrics
    Low-Frequency Raman Detection of Antiferromagnetic Spin Waves in Cr 2O 3
    Dong Biao , CUI Jun , TIAN Yuan-zhe , WU Di , ZHANG Qi
    Progress in Physics    2023, 43 (5): 142-150.   DOI: 10.13725/j.cnki.pip.2023.05.002
    Abstract278)      PDF (4272KB)(332)      

    The antiferromagnetic (AFM) spin waves are promising for being utilized in highspeed and energy-efficient information processing. However, the excitation and detection of terahertz spin waves in AFM systems is challenging. Here, we demonstrate low-frequency Raman spectroscopy as a powerful tool for spin-wave detection in AFM systems. We present a systematic study of AFM magnons in Cr2O3, a prototypical uniaxial antiferromagnet, via Raman measurements down to 2.3 cm−1 (69 GHz). We resolved the magnon Zeeman splitting and the spin-flop transition. We further determined the sign of angular momentum of the magnon branches via polarization-resolved Raman processes. We also obtained the anisotropy energy, the g-factor, and the spin-flop field of Cr2O3 as a function of temperatures and magnetic fields. A spin-wave renormalization theory accounts for all experimental observations. 

    Related Articles | Metrics
    Potential Impurity Effect in Twisted Bilayer Graphene
    LIU Ze-zhong , WANG Da
    Progress in Physics    2023, 43 (5): 151-160.   DOI: 10.13725/j.cnki.pip.2023.05.003
    Abstract159)      PDF (5362KB)(281)      

    Flat band has attracted more and more interest in recent years, motivated by its discovery in twisted bilayer graphene (TBG). In this work, we report our study of the impurity effect on this flat band system, which is an important issue for real materials. Employing the Lanczos recursive method, we solve the local density of states (LDOS) around a potential impurity. We find for large impurity size, a series of bound states are formed inside the impurity, and the flat band peak in LDOS is suppressed near the impurity boundary and shifted by the impurity potential deep inside the impurity. As the impurity size becomes smaller, the effect on the flat band becomes weaker, as anticipated from the large scale of the underlying Wannier function. This property distinguishes with the usual flat band systems with small localized Wannier orbitals, and indicates the flat band in TBG is more stable against small-size impurities. 

    Related Articles | Metrics
    Environmental Stability of 2D Transition Metal Dichalcogenides
    ZHOU Zhen-jia , XU Jie , GAO Li-bo
    Progress in Physics    2023, 43 (4): 97-116.   DOI: 10.13725/j.cnki.pip.2023.04.001
    Abstract378)      PDF (837KB)(670)      

    Two-dimensional (2D) transition metal dichalcogenides (TMDCs) with a unique unity of favorable electronic and mechanical properties have been developed for fundamental studies and applications in electronics, spintronics, optoelectronics, energy harvesting and catalysis. However, as they are unstable under harsh conditions, and prone to degradation in the ambient environment, most TMDCs applications are limited. In this review, we analyze the recent advances in the research of environmental stability in TMDCs, covering the latest growth methods, the fundamental mechanisms for stability and kinds of routes to protect 2D TMDCs materials from aging and deterioration. By analyzing key factors that affect TMDCs stability from the growth process, we present a short review of optimizing growth methods for improving the stability of TMDCs. Finally, by providing insights into existing factors, this review is expected to guide the growth of stable TMDCs, which could lead to a new potential approach to growing advanced materials and designing more unexplored heterostructures. 

    Related Articles | Metrics
    Research Progress on Single-Mode Regulation Methods for Whispering Gallery Mode Microcavities
    LIU Shuo, WANG Yu-chen, WANG Xiu-hua, HOU Rui
    Progress in Physics    2023, 43 (4): 117-130.   DOI: 10.13725/j.cnki.pip.2023.04.002
    Abstract330)      PDF (483KB)(660)      

    Whispering gallery mode (WGM) microcavities have attracted wide attention due to their small mode volume, ultra-high Q value, and low threshold. However, in rotationally symmetric WGM microcavities, multiple longitudinal mode laser radiation can be generated, and the directionality of the radiation is poor, which limits its practical applications. Finding effective methods to achieve single-mode radiation of WGM lasers is a key issue for microcavity lasers to move toward practical applications. This review focuses on several methods of single-mode modulation of WGM lasing in recent years, including reducing cavity size, adding mode selection structure, based on the vernier effect, parity-time symmetry breaking, deformed microcavity, etc. This review aims to provide a reference for researchers in related fields and deepen their understanding of the physical mechanism of single-mode modulation of WGM lasing.

    Related Articles | Metrics
    Historic Origin of Quantum Entanglement in Particle Physics
    SHI Yu
    Progress in Physics    2023, 43 (3): 57-67.   DOI: 10.13725/j.cnki.pip.2023.03.001
    Abstract711)      PDF (1284KB)(858)      

    The historic origin of quantum entanglement in particle physics is studied systematically and in depth. In 1957, Bohm and Aharonov noted that the 1950 Wu-Shaknov experiment had realized the discrete version of the Einstein-Podolsky-Rosen correlation. Indeed this experiment was definitely the first experimental realization of spatially separated quantum entanglement in history. Such an experiment had been proposed by Wheeler, as a test of quantum electrodynamics, but his calculation was erroneous. The correct theoretical calculations were made by Ward and Pryce and also by Snyder, Pasternack and Hornbostel. The entangled state of the photons also satisfies the selection rule of C. N. Yang in 1949. After the publication of Bell inequality in 1964, discussions on whether Wu-Shaknov experiment can be exploited in testing the inequality inspired the progress of this field, and a new experiment was done by Wu’s group. In 1957, Lee, Oehme and Yang established the quantum mechanical formulation of the kaons, and discovered that neutral kaon is a two-state system. The following year,Goldhaber, Lee and Yang wrote down entangled states of a pair of kaons for the first time, in which each kaon is allowed to be charged or neutral, as the entanglement in internal degrees of high energy particles beyond photons written down for the first time. In 1960, as an unpublished work, Lee and Yang discussed an entangled state of a pair of neutral kaons. Such entangled kaons widely exist in meson factories later on. Several physicist are also introduced, especially Ward.

    Related Articles | Metrics

    Types and Properties of Copper-Oxide Superconductors with Critical Temperatures Above 110 K

    TONG Shu-yun, CAI Chuan-bing
    Progress in Physics    2023, 43 (3): 68-83.   DOI: 10.13725/j.cnki.pip.2023.03.002
    Abstract989)      PDF (4571KB)(712)      

    Oxide superconductor is one of the most important forms of unconventional superconductors, in which the transition temperatures of thallium series, mercury series and copper-carbon series superconductors can reach 110 K or above. High superconducting transition temperature and irreversible magnetic field in liquid nitrogen temperature region have attracted much attention. Obviously, the high superconducting critical temperature increases the choice of cooling medium for superconducting applications. Economical and practical coolants are expected to expand the application fields of these high superconducting transition temperature (T) superconductors and increase the feasibility of long-term operation. In this paper, the development and superconducting properties of 110 K superconducting materials including thallium, mercury and copper-carbon superconductors are introduced and summarized, and the factors affecting the superconducting transition temperature are analyzed theoretically to qualitatively explain the reasons for the high T of high temperature superconductors. Special attention is paid to the analysis of the differences of their irreversible fields, and the possible new applications of these high critical temperature superconductors are prospected.

    Related Articles | Metrics
    Second-Order Nonlinear Optics in Transition Metal Dichalcogenides
    WU Hui , QIN Chun-bo , ZHANG Chun-feng ,
    Progress in Physics    2023, 43 (3): 84-95.   DOI: 10.13725/j.cnki.pip.2023.03.003
    Abstract475)      PDF (5051KB)(632)      

    Second-order nonlinear optics is a crucial technique for light frequency conversion with broad applications in scientific research and technological advancements. Monolayer transition metal dichalcogenides exhibit extraordinarily high second-order nonlinear susceptibilities, indicating their significant potential for efficient nonlinear optical response. Maintain the giant nonlinear coefficient of monolayer, expand material thickness and frequency response region, and improve nonlinear response is an important challenge. This paper presents an overview of the regulation of second-order nonlinear optical effects based on monolayer transition metal dichalcogenides. We discuss the frequency dependence of monolayer transition metal dichalcogenides, as well as multi-layer stacking of different symmetric phases. Additionally, we summarize the potential applications of their nonlinear optical effects. 

    Related Articles | Metrics
    A Review on Band Unfolding Technique and Its Applications
    CHEN Jia-xin, CHEN Ming-xing
    Progress in Physics    2023, 43 (2): 25-40.   DOI: 10.13725/j.cnki.pip.2023.02.001
    Abstract1304)      PDF (58451KB)(1484)      
    First-principles methods based on the density-functional theory have been widely applied to investigate structures and properties of materials and further to design new functional materials. The supercell method is usually used for the modeling of doped systems and interfaces. Unfortunately, the use of supercells leads to band foldings. As a result, the nature of electronic bands may be hidden, which brings difficulties in understanding the effects of doping and interfacing on the band structure of materials. This review provides recent advances in band unfolding technique within the plane-wave method and the linear combination of atomic orbitals. It also gives unfolding of phononic bands and lists a number of codes for band unfolding calculations. Finally, it presents a few applications of the technique and an outlook on further research options.
    Related Articles | Metrics
    Cell Tissue Simulations Based on Active Network Models
    LI Zhu-qin, LEI Qun-li, MA Yu-qiang
    Progress in Physics    2023, 43 (2): 41-55.   DOI: 10.13725/j.cnki.pip.2023.02.002
    Abstract370)      PDF (9233KB)(838)      

    In the last decade, motivated by advances in cell biology, theoretical studies of the cell tissue as active matter have emerged as a new area in soft matter physics. This article reviews recent theoretical progresses based on the active network (AN) model of cell tissue. In the mesoscopic scale, the non-equilibrium dynamics of cell tissue is mainly driven by the self-propulsion of cells and non-propulsion activities, like active contractility or cellular tension/volume oscillation. AN models of self-propelled cells can reproduce complex dynamics of cell tissue in vivio, such as activity/adhesion driven solid-liquid transition, flocking and active turbulence. The AN model incorporating cellular tension fluctuation can also simulate the cell volume oscillation waves in embryo of Drosophila, and predict the fluctuation-driven solid-liquid transition of cell tissue. The structural phase transition and density fluctuation of cell tissue were also studied by using AN models, which deepens our understanding of this unique non-equilibrium soft matter system.

    Related Articles | Metrics
    Pressure-Induced Superconducting and Topological Phase Transitions in the Ru X 2 ( X=P, As, Sb) Family Compounds
    CHEN Qun , WU Jue-fei , WANG Xiao-meng , DING Chi, HUANG Tian-heng , LU Qing , SUN Jian
    Progress in Physics    2022, 42 (6): 195-206.   DOI: 10.13725/j.cnki.pip.2022.06.001
    Abstract351)      PDF (9142KB)(483)      

    RuSb2, as a sister material of thermoelectric material FeSb2, has been extensively studied focusing on the comparisons with FeSb2, however, the properties of RuSb2 under pressure have not been surveyed thoroughly yet. In this work, we studied the properties of RuSb2 under pressure and explored the similarities and differences of crystal and electronic structures between the Ru-pnictides partners RuP2 and RuAs2. Using the crystal structures search method together with first-principles calculations, we found that this family undergoes a serial of structural phase transitions: (I) For RuSb2: PnnmI4/mcmI4/mmm; (II) for RuP2: PnnmI41/amd → Cmcm; (III) for RuAs2: Pnnm → P-62m. The newly found five phases are all energetically and dynamically stable at high-pressure and exhibit metallic properties. The four high pressure phases of RuSb2 and RuP2 can be quenched to zero pressure. The superconducting transition temperatures of I4/mcm and I4/mmm phases of RuSb2 and I41/amd and Cmcm phase of RuP2 are predicted to be approximately 7.3 K, 10.9 K, 13.0 K, and 10.1 K at 0 GPa, respectively. In addition, the I4/mcm and I4/mmm phases of RuSb2 and the I41/amd phase of RuP2 exhibit non-trivial topological properties. Our studies illustrate that pressure is an effective way to tune the structural, electronic, and superconducting behavior of the Ru-pnictides compounds.

    Related Articles | Metrics
    Thermal Transport Measurements in Strongly Correlated Electronic Systems 
    CHENG Shu-fan , XU Hao , BAO Song , WEN Jin-sheng
    Progress in Physics    2022, 42 (6): 207-231.   DOI: 10.13725/j.cnki.pip.2022.06.002
    Abstract440)      PDF (11873KB)(477)      

    When taking into account the electronic correlations such as the onsite Coulomb repulsion and coupling between electrons, spins and orbitals, many fascinating novel quantum states beyond the free-electron framework can emerge, e.g., unconventional superconductiviity and quantum spin liquids. The understanding of these new states not only will expand the existing territory of our knowledge, but also likely lead to revolution in quantum science and technology. Therefore, studying the strongly correlated physics is a cutting-edge theme in condensed matter physics. The parent state of cuprate high-temperature superconductors is a Mott insulator, an insulating state due to the strong electronic correlation, whereas the band theory predicts it to be metallic. Due to the Coulomb gap in Mott insulators, the charge degree of freedom is often frozen, which makes electrical transport measurements inapplicable. As a probe sensitive to the elementary excitations of quasiparticles not limited to electrons, but also including magnons, spinons, as well as phonons, thermal transport measurements play an important role in the study of strongly correlated electronic systems. In this paper, we review some of the recent interesting results on unconventional superconductors, heavy fermions and quantum spin liquids utilizing the longitudinal thermal transport measurements, complimentary to our recent review article on the progress of the transverse thermal conductivity measurements on the thermal Hall effect. 

    Related Articles | Metrics
    Gauge Field and Fiber Bundle:Its Contents, Methods, and Meanings 
    ZHAO Song-nian , LU Bo, CHEN Ken, HUANG Xu
    Progress in Physics    2023, 43 (1): 10-24.   DOI: 10.13725/j.cnki.pip.2023.01.002
    Abstract806)      PDF (708KB)(1170)      
    Related Articles | Metrics
    Experimental Progress in Thermal Hall Conductivity Research on Strongly Correlated Electronic Systems
    XU Hao, CHENG Shu-fan, BAO Song , WEN Jin-sheng
    Progress in Physics    2022, 42 (5): 159-183.   DOI: 10.13725/j.cnki.pip.2022.05.001
    Abstract475)      PDF (7225KB)(569)      

    Thermal Hall effect (THE) is to describe the phenomenon where heat carriers are deflected by an external magnetic field applied perpendicular to the heat flow, and thus the carriers gain transverse velocity, leading to a finite temperature gradient on the two sides orthogonal to the heat flow and field. THE is predicted to occur in systems with nontrivial Berry curvatures and thus can reveal topological properties, similar to the electrical Hall effect. However, THE is not limited to charge excitations as in the electrical Hall effect, but rather, to all kinds of excitations that are able to conduct heat, making it possible to explore the exotic properties in strongly correlated electronic systems, which are typically insulators. Therefore, THE is more universal than the electrical form and has become a powerful probe in detecting charge-neutral excitations, such as phonons and magnons. Moreover, there are some sources such as chiral phonons, which are beyond a simple nontrivial-Berry-curvature scenario, that can also give rise to THE; examining THE wherein will shed light on the complex microscopic mechanism hidden in materials. Despite these, heat signals are much weaker than electrical ones. Especially for measurements of the thermal Hall conductivity, it is often needed to collect weak signals on top of a large background. This makes measuring the THE challenging—but thanks to the sustained efforts of the community, this field is developing rapidly in recent years, with many interesting results on the measurements of the thermal Hall conductivity. In this review article, we try to summarize some of these exciting accomplishments, point out remaining outstanding issues, and suggest possible future directions. 

    Related Articles | Metrics
    Hydrogen-Based Superconductors under High Pressures
    DU Ming-yang, ZHANG Zi-han, DUAN De-fang, CUI Tian
    Progress in Physics    2022, 42 (5): 184-192.   DOI: 10.13725/j.cnki.pip.2022.05.002
    Abstract545)      PDF (3042KB)(1332)      

    Achieving room temperature superconductivity has always been the dream of mankind pursuing for a long time. Finding and synthesizing new materials with room temperature superconductivity is the ”Holy Grail” of condensed matter physics. Since the theoretical and experimental discovery of H3S and LaH10 with high superconducting critical temperature above 200 K, the hydrogen-based superconductors became the best candidate for achieving room temperature superconductivity, which is also one of the hot areas of multi-disciplinary research in physics, materials science etc. In this work, we outline the development history of superconductors, introduce several typical superconducting materials, focus on the current progress and challenges of hydrogen based superconductors under high pressures, discuss the design ideas of hydrogen based high-temperature superconductors in the middle and low pressure range, and look forward to the possibility of hydrogen-based superconductors with high critical temperature and even room temperature under low pressure or ambient pressure.

    Related Articles | Metrics
    Finite-Temperature Tensor Renormalization Group Method and the Applications to Frustrated Quantum Magnets#br#
    LI Han, LI Wei
    Progress in Physics    2022, 42 (4): 121-146.   DOI: 10.13725/j.cnki.pip.2022.04.001
    Abstract367)      PDF (88824KB)(436)      

    The exotic spin states and quantum effects in frustrated magnets have attracted intensive research interest in recent years, which also have intimate connections with hightemperature superconductivity and topological quantum computing, etc. Experimentally, people have focused on typical spin liquid candidate materials including the triangular-, kagomeand Kitaev honeycomb-lattice frustrated magnets. However, it constitutes a very challenging many-body problem to clarify the quantum states and phase transitions therein. Recently, we point out that it is possible to establish a protocol for understanding and explaining experiments of frustrated magnets in an unbiased manner. By employing the finite-temperature tensor renormalization group methods, we carry out accurate calculations and analyses of thermodynamic properties, determine the microscopic spin model of the frustrated magnets, and make further theoretical predictions. Below, we firstly introduce the recently proposed tensor renormalization group (TRG) methods, including the linear and exponential TRG, and discuss their applications on the triangular-lattice quantum Ising magnet TmMgGaO4 and the Kitaevhoneycomb material α-RuCl3. We demonstrate that the finite-temperature TRG approaches shed light on the study of spin liquid candidate materials, and could facilitate cutting-edge research in the field of strongly correlated quantum systems.

    Related Articles | Metrics