物理学进展 ›› 2021, Vol. 41 ›› Issue (1): 39-61.doi: 10.13725/j.cnki.pip.2021.01.002

所属专题: 2022年, 第42卷

• • 上一篇    

MAX 相陶瓷的结构、制备及物理性能研究

  

  1. 1 辽宁大学,沈阳 110036 2 松山湖材料实验室,东莞 523808 3 东莞理工学院,东莞 523808 4 中国科学院物理研究所,北京 100190

  • 收稿日期:2020-12-03 出版日期:2021-02-20 发布日期:2021-02-20
  • 基金资助:

    国家自然科学基金(No. 52001011)、中 国博士后科学基金(No. 2020M670509)、广东省自然 科学基金(No. 2018A0303100018) 和广东省基础与应 用基础研究基金(No. 2020A1515110490)

MAX phase:Synthesis, Structure and Property

  1. 1. School of Physics, Liaoning University, Shenyang 110036 2. Songshan Lake Materials Lab, Dongguang 523808 3. Dongguan University of Technology, Dongguang 523808 4. Institute of Physics, Chinese Academy of Sciences, Beijing 100190

  • Received:2020-12-03 Online:2021-02-20 Published:2021-02-20

摘要:

MAX 相陶瓷因具有独特的 MX 片层与A 片层交替堆叠的晶体结构,使其兼具金属和陶 瓷的优良特性,如良好的导热导电性、可加工性,同时具有良好的抗氧化性、耐腐蚀性以及耐 摩擦磨损等性能,具有非常广泛的应用前景。本文首先介绍了 MAX 相陶瓷材料的种类与晶体 结构,并简述了近几年新发现的 MAX 相陶瓷材料以及制备手段的发展动态。之后从 MAX 相 物理性能的角度出发,重点综述了几种典型 MAX 相陶瓷材料的弹性性能、电学性能、热学性 能、磁性能以及抗辐照性能的研究进展。此外,进一步介绍了MAX 相的二维衍生物 MXene 的 衍生过程、超导性以及其在电化学储能、催化领域的研究进展。最后,本文从探索 MAX 相材 料新结构的多样性、MAX 相物理性能及相关理论计算、MXene 二维材料以及相应的制备、表 征和应用等方面,展望了 MAX 相陶瓷材料的潜在研究方向及应用前景,为 MAX 相和 MXene 材料的深入研究提供了新的思路。

关键词: MAX 相, MXenes, 三元层状陶瓷, 合成, 物理性能

Abstract: MAX phase ceramics have a unique crystal structure in which MX sheets and A-element layers are alternately stacked, so that it has both the excellent characteristics of metal and ceramics. They exhibit high electrical and thermal conductivities, and are machinable. And at the same time, they are resistant to oxidation and corrosion, and elastic stiff. They are attracting more and more attention in the past 20 years with their potential widely applications. In this paper, some research work on MAX phase and MXenes materials are reviewed. Firstly, recent discoveries on the newly MAX phases and their preparation method are introduced. Then, from the physical-property perspective, the research progress on the elastic, electrical, thermal and magnetic properties and radiation resistance of typical MAX phases is reviewed. In addition, a further introduction of MXene, which is a two-dimensional derivative of MAX phases, and its synthesis, characterization, properties and its application in electrochemical energy storage and in catalysis is presented. Finally, important future research directions are discussed. These include charting the unknown regions in phase diagrams to discover new MAX phases, exploring their unknown special physical properties, studying 2D derivative MXene, as well as researching their synthesis, characterization, and potential applications.

Key words:

MAX phases, MXene, Ternary layered ceramics, Synthesis, Physical properties

中图分类号: