Loading...

Table of Content

    20 August 2023, Volume 43 Issue 4 Previous Issue    Next Issue

    For Selected: Toggle Thumbnails
    Environmental Stability of 2D Transition Metal Dichalcogenides
    ZHOU Zhen-jia , XU Jie , GAO Li-bo
    2023, 43 (4):  97-116.  doi: 10.13725/j.cnki.pip.2023.04.001
    PDF (837KB) ( 921 )  

    Two-dimensional (2D) transition metal dichalcogenides (TMDCs) with a unique unity of favorable electronic and mechanical properties have been developed for fundamental studies and applications in electronics, spintronics, optoelectronics, energy harvesting and catalysis. However, as they are unstable under harsh conditions, and prone to degradation in the ambient environment, most TMDCs applications are limited. In this review, we analyze the recent advances in the research of environmental stability in TMDCs, covering the latest growth methods, the fundamental mechanisms for stability and kinds of routes to protect 2D TMDCs materials from aging and deterioration. By analyzing key factors that affect TMDCs stability from the growth process, we present a short review of optimizing growth methods for improving the stability of TMDCs. Finally, by providing insights into existing factors, this review is expected to guide the growth of stable TMDCs, which could lead to a new potential approach to growing advanced materials and designing more unexplored heterostructures. 

    Related Articles | Metrics
    Research Progress on Single-Mode Regulation Methods for Whispering Gallery Mode Microcavities
    LIU Shuo, WANG Yu-chen, WANG Xiu-hua, HOU Rui
    2023, 43 (4):  117-130.  doi: 10.13725/j.cnki.pip.2023.04.002
    PDF (483KB) ( 1313 )  

    Whispering gallery mode (WGM) microcavities have attracted wide attention due to their small mode volume, ultra-high Q value, and low threshold. However, in rotationally symmetric WGM microcavities, multiple longitudinal mode laser radiation can be generated, and the directionality of the radiation is poor, which limits its practical applications. Finding effective methods to achieve single-mode radiation of WGM lasers is a key issue for microcavity lasers to move toward practical applications. This review focuses on several methods of single-mode modulation of WGM lasing in recent years, including reducing cavity size, adding mode selection structure, based on the vernier effect, parity-time symmetry breaking, deformed microcavity, etc. This review aims to provide a reference for researchers in related fields and deepen their understanding of the physical mechanism of single-mode modulation of WGM lasing.

    Related Articles | Metrics