Loading...

Table of Content

    20 October 2022, Volume 42 Issue 5 Previous Issue    Next Issue

    For Selected: Toggle Thumbnails
    Experimental Progress in Thermal Hall Conductivity Research on Strongly Correlated Electronic Systems
    XU Hao, CHENG Shu-fan, BAO Song , WEN Jin-sheng
    2022, 42 (5):  159-183.  doi: 10.13725/j.cnki.pip.2022.05.001
    PDF (7225KB) ( 760 )  

    Thermal Hall effect (THE) is to describe the phenomenon where heat carriers are deflected by an external magnetic field applied perpendicular to the heat flow, and thus the carriers gain transverse velocity, leading to a finite temperature gradient on the two sides orthogonal to the heat flow and field. THE is predicted to occur in systems with nontrivial Berry curvatures and thus can reveal topological properties, similar to the electrical Hall effect. However, THE is not limited to charge excitations as in the electrical Hall effect, but rather, to all kinds of excitations that are able to conduct heat, making it possible to explore the exotic properties in strongly correlated electronic systems, which are typically insulators. Therefore, THE is more universal than the electrical form and has become a powerful probe in detecting charge-neutral excitations, such as phonons and magnons. Moreover, there are some sources such as chiral phonons, which are beyond a simple nontrivial-Berry-curvature scenario, that can also give rise to THE; examining THE wherein will shed light on the complex microscopic mechanism hidden in materials. Despite these, heat signals are much weaker than electrical ones. Especially for measurements of the thermal Hall conductivity, it is often needed to collect weak signals on top of a large background. This makes measuring the THE challenging—but thanks to the sustained efforts of the community, this field is developing rapidly in recent years, with many interesting results on the measurements of the thermal Hall conductivity. In this review article, we try to summarize some of these exciting accomplishments, point out remaining outstanding issues, and suggest possible future directions. 

    Related Articles | Metrics
    Hydrogen-Based Superconductors under High Pressures
    DU Ming-yang, ZHANG Zi-han, DUAN De-fang, CUI Tian
    2022, 42 (5):  184-192.  doi: 10.13725/j.cnki.pip.2022.05.002
    PDF (3042KB) ( 1927 )  

    Achieving room temperature superconductivity has always been the dream of mankind pursuing for a long time. Finding and synthesizing new materials with room temperature superconductivity is the ”Holy Grail” of condensed matter physics. Since the theoretical and experimental discovery of H3S and LaH10 with high superconducting critical temperature above 200 K, the hydrogen-based superconductors became the best candidate for achieving room temperature superconductivity, which is also one of the hot areas of multi-disciplinary research in physics, materials science etc. In this work, we outline the development history of superconductors, introduce several typical superconducting materials, focus on the current progress and challenges of hydrogen based superconductors under high pressures, discuss the design ideas of hydrogen based high-temperature superconductors in the middle and low pressure range, and look forward to the possibility of hydrogen-based superconductors with high critical temperature and even room temperature under low pressure or ambient pressure.

    Related Articles | Metrics