摘要: 量子自旋液体是指由于其中存在的强量子涨落导致自旋即使在零温极限下也不形成磁有序的一种新的自旋量子态。区别于传统的磁有序材料,它的基态没有确定的序参量来表示,并且不伴随任何自发的对称性破缺,超越了朗道相变理论所能描述的物相范畴,代表了一种新奇的量子物态,具有非常高的理论研究价值。这一全新的物态被认为与非常规超导机制之间有着十分紧密的关系。同时在未来的量子计算方面有着非常诱人的应用前景,因此一直以来备受关注。虽然量子自旋液体理论经过近半个世纪的积淀有了长足的发展,但是由于候选材料稀少,实验测量条件苛刻等多种因素制约,导致实验方面的进展相对缓慢。近年来各项实验技术的进步和成熟为量子自旋液体候选材料的测量表征提供了有利条件,加快了实验工作的推进速度。本文将从实验的角度介绍 (1) 几何阻挫量子自旋液体候选材料,包括三角晶格化合物 YbMgGaO$_4$ 和 YbZnGaO$_4$、$\kappa$-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$、EtMe$_3$Sb[Pd(dmit)$_2$]$_2$ 和 kagom\'e 格子化合物 ZnCu$_3$(OH)$_6$Cl$_2$;(2) Kitaev 量子自旋液体候选材料铱氧化物 (Na$_2$IrO$_3$ 与 $\alpha$-, $\beta$-, $\gamma$-Li$_2$IrO$_3$) 和 $\alpha$-RuCl$_3$。文章将着重介绍近年来在量子自旋液体实验方面的进展,之后做一个简单的总结,最后对量子自旋液体的未来发展做一个展望。