Loading...

Table of Content

    20 April 2024, Volume 44 Issue 2 Previous Issue    Next Issue

    For Selected: Toggle Thumbnails
    Progress in First-Principles Methods for Simulation of Warm Dense Matter
    ZHANG Hang, CHEN Mo-han
    2024, 44 (2):  49-72.  doi: 10.13725/j.cnki.pip.2024.02.001
    PDF (2466KB) ( 372 )  
    Warm Dense Matter (WDM) represents a transitional state of matter situated between condensed matter and plasma, emerging as a cutting-edge research direction within the realms of planetary physics, laboratory astrophysics, and inertial confinement fusion in the field of high-energy density physics. WDM is characterized by significant quantum effects, partial ionization, strong coupling, electron degeneracy, and thermal effects, necessitating a description based on fundamental quantum mechanical theories. In recent years, simulations and calculations based on quantum mechanics’ first principles have rapidly advanced, increasingly becoming an effective tool for a deeper understanding of WDM properties. On one hand, applying First Principles widely used in condensed matter physics and materials science to WDM poses considerable challenges, especially under extreme conditions such as broad temperature ranges and high pressures, which require continuous improvements to existing first-principle algorithms and software. On the other hand, the rapid development of machine learning-based molecular dynamics methods offers new tools for simulating WDM. In this review, we initially revisit traditional first principles applicable to WDM simulations, including Kohn-Sham Density Functional Theory and Orbital-free Density Functional Theory. Subsequently, we introduce newly developed methods and software, such as Extended First Principles Molecular Dynamics and Stochastic Density Functional Theory, the latter of which has been implemented in the domestically developed open-source density functional theory software, Atomic-orbital Based Ab-initio Computation at UStc (ABACUS). These innovative approaches significantly boost the computational scale and efficiency of WDM studies, thereby elevating the precision of structural, dynamical, and transport coefficient calculations related to WDM
    Related Articles | Metrics
    Research Progress on the Regulation of Metal-Site Bismuth Doping in Halide Perovskites
    HUANG Xiao-rui, SUN Yue, HE Sheng-rong, XING Jun
    2024, 44 (2):  73-95.  doi: 10.13725/j.cnki.pip.2024.02.002
    PDF (8816KB) ( 489 )  
    Related Articles | Metrics
    Profiling of the Local Distribution of Hot-Carrier-Induced Defects in Nanoscale CMOS Devices
    MA Li-juan, TAO Yong-chun
    2024, 44 (2):  97-101.  doi: 10.13725/j.cnki.pip.2024.02.003
    PDF (436KB) ( 143 )  
    A surface potential technique is proposed to characterize the local distribution of hot-carrier-induced interface states and oxide charge in nanoscale CMOS devices. These defects are produced by the hot carrier injection stress in the Si/SiO2 interface and the gate oxide layer. With the increase of the stress time, the interface state and oxide charge will cause the drift of the device parameters such as the threshold voltage. Based on the DIBL effect, the threshold voltage offset at the peak of the surface potential is selected to characterize the number of HCI induced interface state and oxide charge at the corresponding position of the channel.The distribution of threshold voltage offset with source/drain voltage before and after HCI stress was measured. The local distribution of interface state and oxide charge numbers along the channel are obtained by surface potential model. In this paper, the distributions of interface state and oxide charge induced by HCI stress in 32 nm CMOS devices are accurately characterized, and the mechanism of HCI generation is analyzed. 
    Related Articles | Metrics