物理学进展 ›› 2018, Vol. 38 ›› Issue (6): 239-252.

• • 上一篇    下一篇

轨道序和巡游性对尖晶石结构钒氧化物AV2O4 (A = Mn, Fe, Co) 物性影响的研究

马杰,林高庭,罗轩,孙玉平   

  • 发布日期:2020-10-12

The orbital-ordering and itinerancy effects on the physical properties in AV2O4 (A = Mn, Fe, Co)

Ma Jie, Lin Gao-Ting, Luo Xuan, Sun Yu-Ping   

  • Published:2020-10-12

摘要: 在尖晶石钒基氧化物AV2O4 中,因为自旋阻挫、轨道序、巡游性等独特的内禀属性间 存在着相互合作和竞争,所以该体系常常表现出复杂而有趣的物理现象。通过对A 位磁性离子 的调控, 我们详细研究该体系中不同物性的起源,比如磁相变与结构相变的不同起因,局域和 巡游电子的交叉行为等等。我们以Mn1??xCoxV2O4 和Fe1??xCoxV2O4 体系为研究对象,通过 变温X 射线衍射、磁化率、比热和中子散射等测试手段,结合第一性原理计算,对其物性起 源进行了详细的研究。我们发现:(i) 在低Co2+ 离子掺杂时,体系受到局域V3+ 离子以及A 位Fe2+ 离子的轨道序作用,往往会在磁有序附近伴随着结构相变的出现,以至于弱化体系中 钒离子独立形成的四面体造成的几何阻挫。这也说明Co2+ 离子低掺杂下,该体系有着强的自 旋{晶格耦合;(ii) 在高Co2+ 离子掺杂时,由于巡游性的增强,轨道序的弱化,JAB 交换相互 作用增强,体系也表现出明显的磁各向同性。因此磁相变温度向更高的温度移动,而结构相变温 度向低温移动甚至消失。

关键词: 自旋{轨道耦合;磁阻挫;尖晶石钒基氧化物;中子衍射;非弹性中子散射

Abstract: Due to the complicated interplays of spin-frustration, orbital-ordering, and electron-itinerancy, the spinel vanadate, AV2O4, exhibits the interesting physical phenomena and attracts a lot of attention in both scientific and industrial areas. With the method of adjusting the A-site ions, we studied the mechanisms of those specific physical properties, such as the magnetic-structural phase transition, the effects of the local and itinerant electrons. Applying the techniques of magnetic susceptibility, specific heat, variable temperature X-ray diffraction and neutron scattering, and first-principles calculations, we studied the systems of Mn1??xCoxV2O4 and Fe1??xCoxV2O4, and found that: (i) For the low Co-doping compounds, the system was subject to local V3+ and A-site Fe2+. The geometrical frustration from the V-tetrahedra was weak, and the orbital sequence action tended to accompany the structural phase transitions with the magnetic ordering. Hence, the spin-lattice coupling was strong. (ii) For the high Co-doping compounds, the strong electronic itinerance decreased the orbital effects of the V-ion, and the exchange energy, JAB, enhanced, which induced the system isotropic. Therefore, the magnetic phase transition temperature increased, while the structural phase transition temperature shifted to a lower temperature or even finally disappears.

Key words: Spin-orbital coupling; magnetic frustration; spinel vanadate; Neutron diffraction; Inelastic neutron scattering