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Abstract: RuSbhs, as a sister material of thermoelectric material FeSbs, has been extensively
studied focusing on the comparisons with FeSbs, however, the properties of RuSbs under
pressure have not been surveyed thoroughly yet. In this work, we studied the properties of
RuSbz under pressure and explored the similarities and differences of crystal and electronic
structures between the Ru-pnictides partners RuP2 and RuAs,. Using the crystal structures
search method together with first-principles calculations, we found that this family undergoes
a serial of structural phase transitions: (I) For RuSbs: Pnnm — I4/mem — I4/mmm; (II)
for RuP2: Pnnm — I41/amd — Cmem; (III) for RuAs;: Pnnm — P-62m. The newly
found five phases are all energetically and dynamically stable at high-pressure and exhibit
metallic properties. The four high pressure phases of RuSbs and RuP2 can be quenched to
zero pressure. The superconducting transition temperatures of 74/mcem and I4/mmm phases
of RuSbs and I4,/amd and Cmem phase of RuP» are predicted to be approximately 7.3 K,
10.9 K, 13.0 K, and 10.1 K at 0 GPa, respectively. In addition, the I4/mem and I4/mmm
phases of RuSb2 and the I4:/amd phase of RuP2 exhibit non-trivial topological properties.
Our studies illustrate that pressure is an effective way to tune the structural, electronic, and

superconducting behavior of the Ru-pnictides compounds.
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In recent decades, transition-metal pnictides have

201 drawn lots of attention due to their unique physi-

202 cal properties, such as high-performance thermoelec-

tricity in antimonides® € unconventional supercon-

ductivity in arsenides@ 0 and topological properties
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monides have been studied intensively. For example,
FeSby was observed to show extremely large ther-
mopower and thermal conductivity at low temper-
atures'8 21 which was predicted to be originated
from strong electron-electron correlation 282223 and

21

the phonon-drag effect | In particular, the correla-

tion strength is expected to increase with an increasing
hybridization gap 2.

RuShs, as a sister material of FeSbo, has been
widely studied in recent decades. It is a narrow-gap
semiconductor with an estimated gap of 0.26 eV, which
is larger than that of FeSby. Although RuSby is orig-
inally introduced as one of the thermoelectric candi-
dates®4 the recent discovery indicates that its ther-
moelectric power is relatively small, which is one order
of magnitude less than that of FeShy, at low temper-
atures. Nevertheless, the distinct Seebeck patterns of
RuSby and FeShs draw lots of attention, with a par-
ticular Seebeck peak located at about 10 K, whereas
the Seebeck coefficient of other thermoelectric mate-
rials usually decreases monotonically with increasing

g

temperature Moreover, they have a different mag-

netic response 8], Despite RuSby being often used as a

reference to study the multiple disparities with FeShs,

(24, 2d]

focusing on the magnetic properties , not much

work has been done on RuSb, itself.

As a fundamental thermodynamic parameter,
pressure can be employed to control various properties

of materials. It can cause a structural phase transition

without contaminating materials with impurities 2723

or synthesize new materials with exciting proper-

tiesB4 4] Pressure-driven structural phase transi-

tions often reshape electronic structures accompanied

by exotic physical properties. For instance, pressure

can induce superconductivity transition in topologi-

19 J1d]
)

cal materials! and change the superconducting

transition temperature of unconventional superconduc-

AT

tors! The transition-metal pnictides also exhibit

novel properties under high pressure. For instance,
FeSby undergoes a phase transition from insulator to
metal %9 the thermoelectric properties of CoSbs can

be enhanced by pressure 7

RuSbs has
received little attention and deserves further studies.

Among thermoelectric materials,

Given the similarities in crystal and electronic struc-

tures in other Ru-pnictides partners RuPy and RuAs,,
they can also be used for comparison. In this work,
we employed pressure conditions up to 120 GPa to
systematically study RuSbs, RuP,, and RuAsy com-
pounds by crystal structure search method and first-
principles calculations. We found that the RuXy (X=P,
As, Sb) family compounds undergo a series of structural
phase transitions. For RuSbe: Pnnm — I4/mem —
I4/mmm; for RuPy: Pnnm — I41/amd — Cmem;
and for RuAss: Pnnm — P-62m. These newly pre-
dicted phases are energetically and dynamically stable
at high pressure and even at ambient pressure. Then we
studied their structural, electronic, and superconduct-
ing properties. When the spin-orbit coupling (SOC)
effects were included, the I4/mem, I4/mmm phases of
RuSbs, and the I4;/amd phase of RuP, are identified
to be topologically non-trivial. Moreover, the I4/mcem,
I4/mmm phases of RuSbs and the I4;/amd, Cmem
phases of RuP5 exhibit superconductivity at zero pres-

sure.

II. COMPUTATIONAL METHOD

To search for the most stable structures at a given
pressure for RuSbs, RuAs,, and RuPsy, we used the
machine-learning accelerated random structure search-
ing code called Magus (machine learning and graph
theory assisted universal structure searcher) #5249 com-
bined with the ab-initio calculations at 20, 40, 80,
100, and 120 GPa respectively. The Magus code
has successfully predicted many high-pressure struc-
tures in different systems®%5954]  The maximum
number of atoms in the simulation cell is up to 18.
Structural optimizations and electronic structure cal-
culations were carried out using the projector aug-
mented wave (PAW)E2 method as implemented in
the Vienna ab-initio simulation package (VASP)[Bd.
We employed the generalized gradient approximation
(GGA) exchange-correlation density functional param-
eterized by Perdew-Burke-Ernzerhof (PBE)B. Elec-
tronic localization functions (ELF) calculated by VASP
were displayed by Visualization for Electronic Struc-
tural Analysis (VESTA)BE, The valence electrons of
the pseudopotentials are 4d'%5s25pt, 5s25p3, 3s23p?,
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and 4s24p?3 for Ru, Sb, P, and As, respectively. Struc-
tures were relaxed with high accuracy with the plane-
wave basis energy cutoff of 400 eV. Brillouin zone was
meshed using the Monkhorst-Pack method with a spac-
ing of 2rx 0.25 nm~!(the equivalent grid for Pnnm,
I4/mem, I4mmm, 141 /amd, Cmcm, P-62m phase at
the highest pressure are 9x12x10, 19x19x6, 16 x16 X8,
9 x 12 x 10, 12 x 12 x 14, and 14 x 14 x 10, respec-
tively). In our atomic optimization, the tolerance of
atomic force was set to 0.01 eéV/nm. Phonon modes
and frequencies of the structures were calculated by
the VASP code, combining the PHONOPY code 59
which the phonon calculations were carried out with
the finite-displacement method. We applied 2 x 2 x 2
supercells to calculate all structure’s force constants.
Quantum Espresso (QE) codel®d is used to calculate
the electron-phonon coupling (EPC) constants and T,
using an energy cutoff of 120 Ry. The PBE exchange-
correlation functional and norm-conserving pseudopo-
tentials are used. We adopted 8 x 8 x 8 k-point mesh for
charge self-consistent calculation, 16 x 16 x 16 k-point
mesh for electron-phonon coupling (EPC) linewidth
integration, and 4 x4 x4 g-point mesh for the dynamical
matrix of I4/mem and I4/mmm phase. The surface
states were obtained by constructing the maximally
localized Wannier functions (MLWFs) 82 and using the
surface Green function approach 82, as implemented in
the WANNIERTOOLS package 53],

III. RESULTS AND DISCUSSIONS

A. Predicted structures under high pressure

We performed structure searches of the RuXs (X=
P, As, Sb) family at 20, 40, 80, 100, and 120 GPa,
respectively. After tens of generations with more than
three thousand structures are assessed at each pres-
sure, we picked out five structures of the RuX, fam-
ily, as shown in Fig. m(b)—(f). The predicted crystal
structures of the RuXs family under high pressure are
in Table @ The enthalpy-pressure relations of the
RuX, family are plotted in Fig. m(g)—(i). For RuShs
in Fig. ﬂ(g), the phase transition from the Pnnm to
the predicted I4/mem (No. 140), as shown in Fig. m(b)
is predicted to occur around 30 GPa, followed by a

phase transition to the predicted I4/mmm (No. 139),
as shown in Fig. m(c), at about 105 GPa. The calculated
volume-pressure (V—-P) curve shows that the volume
collapse is about 5.6 % and 1.2 % at ~30 GPa and ~105
GPa, respectively. These are first-order phase transi-
tions. Compared with the Pnnm phase, the predicted
tetragonal phase I4/mem and I4/mmm are stacked
in Ru and Sb layers along the c-axis. The stacking
sequence of the I4/mem phase is Sb-Ru-Sb, while the
sequence of the I4/mmm phase is Ru-Sb-Sb.

For RuAs; in Fig. m(h), the Pnnm transforms to
the predicted P-62m in Fig. m(d), at around 62 GPa,
accompanying a volume collapse of about 4.8%. The
predicted P-62m is hexagonal. Six As atoms surround

Ru atoms and form hexagons.

For RuPs in Fig. m(i), it undergoes two phase tran-
sitions. The transition from the Pnnm to the pre-
dicted I4;/amd (No. 141) in Fig. m(e) at around 49
GPa, following the transition to the predicted Cmcem
(No. 63) in Fig. m(f) at around 118 GPa. The vol-
ume collapse is about 5.6 % and 1.2 % at ~49 GPa
and ~118 GPa, respectively. The high-pressure phase
T4y /amd is tetragonal and Cmem is orthorhombic.
The P atoms are zig-zag patterns in both of the pre-
dicted structures. The zig-zag patterns form quasi-one-
dimensional chains along the a or c-axis in the pre-
dicted I4;/amd in Fig. m(e), and the Ru atoms are
interspersed among these chains. Moreover, the zig-zag
patterns form P atom layers in the predicted C'mem,
as shown in Fig. m(f)7 sandwiching the Ru atoms.

Then we calculated the phonon dispersions of these
predicted structures both at high pressures and ambient
pressure. The phonon dispersion of the predicted
I4/mem and I4/mmm of RuSby and the predicted
14, /amd and Cmem of RuPs have no imaginary curves
within 120 GPa, suggesting their dynamical stability.
But the predicted P-62m of RuAss is stable above ~40
GPa. Our results indicate that the predicted structures
of RuSby and RuPs are likely to be synthesized after

the pressure release.

B. Electronic structures

As displayed in Fig. E, we calculated the band
structure and the projected density of states (PDOS)
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Fig. 2. The band structure of (a) I4/mcm phase at 40 GPa with SOC, (b) I4/mcm phase at 0 GPa with SOC. The

surface state of (c) I4/mem phase at 0 GPa with SOC. The band structure of (d) 74/mmm phase at 110 GPa with SOC,
(e) I4/mmm phase at 0 GPa with SOC. The surface state of (f) I4/mmm phase at 0 GPa with SOC.

of the predicted I4/mem at 40 GPa [Fig. E(a)] and 0
GPa [Fig. E(b)] and the predicted T4/mmm at 110 GPa
[Fig. E(d)] 0 GPa and [Fig. E(e)] for RuSby with SOC.
The band structures of the predicted I4/mcem and
The PDOS results
indicate that the d electrons of the Ru atoms play a

I4/mmm have metallic features.

dominant role around the Fermi level. Comparing the
PDOS at ambient pressure and high pressure of both
predicted structures, the distribution of the d elec-
trons is more localized around the Fermi level, such
as the dominant peaks of the predicted I4/mem and

I4/mmm at ambient pressure, as shown in Fig. E(b)
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and (e). The increase of the DOS at the Fermi level
may cause the elevation in superconductivity, which
we will discuss in part .

Besides, the band structures of both predicted
phases at ambient pressure, as shown in Fig. E(b) and
(e), open up the energy gap on the high symmetry path.
Thus, we performed the calculation of the topological
invariance with the help of MLWFs.

indicators for the I4/mem phase are Zoy ;=123 = 1,

The symmetry

Zs =1, Zy = 1, Zg = 1, and the symmetry in-
dicators for the I4/mmm phase are Zay =123 = 1,
Zy =0, Zy = 2, Zg = 2, indicating that both phases
are topologically non-trivial. For further confirmation,
we calculated their surface states with SOC, as shown
in Fig. E(c) for I4/mem and Fig E(f) for I4/mmm. The
red regions indicate the projected bulk band structure.
We projected the band structures along k-path M-I'-X
for the I4/mem. Dirac-type surface states appear at
the energy ~0.4 eV below the Fermi level around the T
point. Analogous to the I4/mcm phase, we projected
the band structures along the k-point path X-U-X and
find surface states around the U point, confirming that
the I4/mem and I4/mmm phases are topologically

non-trivial at ambient condition.

As for RuAs,, the band structures and the PDOS
for the predicted P-62m around the transition point
are in Fig. @ It is topologically trivial and the d
electrons of the Ru atoms make the main contribution

around the Fermi level.

The band structure and the PDOS of the T4 /amd
phase at 50 GPa and 0 GPa with SOC are plotted in
Fig. E(a) and (b). It has metallic features within 50
GPa, and the d electrons of the Ru atoms are domi-
nant for the density of states around the Fermi level.
The density of states near the Fermi level has a similar
feature to the RuSby phases. We also computed the
symmetry indicators for the I4;/amd phase at ambi-
ent conditions, with the Z = 1 and Z4 = 1. Then we
projected the band structures along the k-point path
P-T-X and observe the topologically protected gapless
surface states in Fig. E(c) Dirac-type surface band
appears at the energy of ~0.4 eV above the Fermi level
at " point, confirming that the I4; /amd phase is topo-
logically non-trivial. The band structures of the pre-
dicted phases without SOC are plotted in Fig. @

C. Superconductivity

To study the potential superconductivity of the
predicted phases of the RuXs family, we performed the
EPC calculations at different pressures. Phonon dis-
persions, phonon density of states (PDOS), the corre-
sponding Eliashberg spectral function o F(w) and the
EPC parameter X are calculated. The superconducting
transition temperature 7. was estimated according to
the Allen-Dynes modified McMillan formula:

Wiog “1.04(1 + \)
Tc = )
12 &P [/\ — (1 +0.62)\)

(1)

with the typical Coulomb pseudopotential p* = 0.1.
The logarithmic averaged phonon frequencies (wiog),
and frequency-dependent EPC A(w) are obtained from

the Eliashberg formalism.

Fig. @(a) and (b) are the EPC calculation results
of the predicted I4/mcm of RuSbs at 0 GPa and 40
GPa, respectively. The EPC parameter A\ for the pre-
dicted I4/mem at 40 GPa is 0.56 and T, = 3.4 K,
while the EPC parameter A enhances to 0.94 and T, =
7.3 K at ambient pressure. The Fermi surface of the
I4/mem phases at 0 GPa is shown in Fig. @ We
can see that several electron pockets and hole pockets
are distributed along with the high symmetry points,
where the electron pocket around the I' point and the
hole pocket wrapped around the M point are mainly
composed of 4d electrons in Ru atoms. Although we
can observe the phonon softening behavior around M
and Z points, as shown in Fig. H(a), this part does not
make enough contribution to the EPC parameter A.
As mentioned in part , the DOS is more localized
around the Fermi level for the predicted I4/mem at
ambient pressure. This may suggest that the electron
distribution contributes more to the enhancement of T

than the softening behavior at M and Z points.

Fig. H(c) and (d) are the EPC results of the pre-
dicted I4/mmm of RuSby at 0 GPa and 110 GPa, re-
spectively. The EPC parameter A is 1.46 at 0 GPa and
0.32 at 110 GPa, and the corresponding 7. is 10.9 K
and 0.2 K, respectively. Its Fermi surface is plotted
in Fig. @ For I4/mmm phase, there is an electron
pocket around the I'" point and several electron pock-
ets along the X-P path. Different from the I4/mem

phase, phonon softening behavior is along the Brillouin
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path, such as I'-X and P-N. There is a sharp increase

Land 75 ecm~1.

of EPC parameter A between 50 cm™
Meanwhile, there is a localized peak in DOS at ambi-
ent pressure, while the DOS has little dispersion at 110
GPa , as shown in Fig. E(e) and (f). Therefore, the
enhancement of T, is the comprehensive interactions
between phonons and electrons. The A, wioe, and Tt
results for the predicted structures of RuSby are col-

lected in Table ﬂ
The EPC calculations of the predicted structures

for RuP, are in Fig. E and their Fermi surface results are
in Fig. @ There are several electron and hole pock-
ets distributed along the high symmetry points. For

TABLE I. The electron-phonon coupling constant (\), log-
arithmic average of phonon frequencies (wiog), and esti-
mated superconducting critical temperature (7c) with the
Coulomb potential (u*) of 0.1 for I4/mem and I4/mmm
phase of RuSba,.

A Wiog (cm™1) T. (K)
I4/mem-0 GPa 0.94 116.51 7.3
I4/mem-40 GPa 0.56 188.41 3.5
I4/mmm-0 GPa 1.46 97.5 10.9
I4/mmm-110 GPa 0.32 277.7 0.2

the I4;/amd phase, there are several electron pock-
ets around the I' point, A point, and S point. These
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electron pockets are mainly composed of dy., d,., and
dg2_,2 electrons in Ru atoms. The EPC results of the
predicted I4;/amd at 0 GPa and 40 GPa are plotted
in Fig.5 (a) and (b). The EPC parameter \ is ele-
vated from 0.43 at 40 GPa to 0.87 at ambient pressure,
and the T is 2.4 K at 40 GPa and 13.0 K at ambient
pressure. The phonon dispersions are analogous to the
predicted 74/mmm of RuSbs. The phonon bands are
in general softened along the Brillouin path, such as
N-I'-P, while the DOS around the Fermi level at am-
bient pressure is similar to that at 40 GPa, as shown
in Fig. E(a) and (b). Hence, we propose that phonons

make more contributions to EPC.

As for the predicted C'mem phase, the EPC results
at ambient pressure and 125 GPa are depicted in
Fig. B(c) and (d). The EPC parameter A is 1.0 at ambi-
ent pressure and 0.38 at 125 GPa, with T, = 10.1 K at
ambient pressure and T.= 1.2 K at 125 GPa. In anal-
ogous to the EPC results from the predicted 74/mem
of RuSbs, the softening behavior at ambient pressure
along the Brillouin path Y-C and T-Y below 50 cm™!
does not have enough contribution to the EPC param-
eter. Moreover, the DOS is more localized around the
Fermi level at ambient pressure than 125 GPa, as shown
in Fig. @ We assume that the electron distribution

contributes more to the enhancement of T,. The A,
Wiog, and T results for the predicted structures of RuPs
are collected in Table @

TABLE II. The electron-phonon coupling constant (), log-
arithmic average of phonon frequencies (wiog), and esti-
mated superconducting critical temperature (Tc.) with the
Coulomb potential (™) of 0.1 for I4/mem and Cmem phase
of RuPs.

A Wiog (cm™1) T. (K)
I4, /amd-0 GPa 0.87 235.9 13.0
141 /amd-50 GPa 0.43 388.4 2.4
Cmem-0 GPa 1.0 131.1 10.1
Cmem-125 GPa 0.38 390.9 1.2

IV. CONCLUSIONS

In summary, using a machine-learning and graph
theory accelerated crystal structure search package
(Magus), we have investigated the pressure-induced
phase transitions of the RuSby family. It is found that
the RuSb, family undergoes a series of transitions from
the ambient (Pnnm) phase to several high-pressure
phases: (I) For RuSbs, from Pnnm phase to a tetrag-

onal I4/mem phase, then to a tetragonal I4/mmm
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phase; (II) For RuPs, from Pnnm phase to a tetrago-
nal 14, /amd phase, then to a tetragonal Cmem phase;
(ITT) For RuAss, from Pnnm phase to a tetragonal P-
62m phase. Our calculations indicate that these phases
are all stable at high-pressure. Except for the RuAs,,
all these phases can be recovered to ambient pressure.
The I4/mem and I4/mmm phases of RuSbs and the
T4, /amd phase of RuPy are predicted to be topolog-
ical metals, taking into acount the SOC effect. The
superconducting transition temperature 7T, of RuShs
and RuP3 shows a tendency of decreasing with increas-
ing pressure. At 0 GPa, the maximum T¢ of I4/mem
and I4/mmm phases of RuShy are 7.3 K and 10.9 K,
and the T, of the 14, /amd and Cmem phases of RuPy
is 13.0 K and 10.1 K, respectively. We hope that this
work will stimulate experimental efforts to realize them

in the laboratory.
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APPENDIX
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Fig. A1l. RuAsz P-62m band structure and PDOS at 65
GPa, phonon calculation at 65 GPa.
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Fig. A2. RuP2 Cmem band structure and PDOS at 0 GPa
and 120 GPa.
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Fig. A3. Band structures of the predicted phases without
SOC.

Fig. A4. The fermi surface of RuSbs and RuP2 at 0 GPa.
(a) I4/mem RuSbsz, (b) I4/mmm RuSba, (¢) I41/amd
RuP3, and (d) Cmem RuPs.
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TABLE Al. The crystal structure of the predicted RuX2 (X=Sb, As, P) family.
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