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Abstract: Optical Airy beams or pulses, famous for a self-accelerating intense peak, have

recently attracted a great deal of attention triggered by their intriguing properties and unique

advantages in a variety of applications. Under the action of nonlinearities, such wave packets

tend to lose their peculiar structures and the associated accelerating dynamics are accord-

ingly degraded. To circumvent this inconvenience, nonlinear self-accelerating beams/pulses

were conceived, leading to more possibilities to shape a nonlinear process into an accelerat-

ing configuration. Here, we present a review on these nonlinear self-accelerating wave packets

following our recent works. Their physical picture and connection with the Airy wave pack-

ets are discussed. Then we focus on their accelerating property that shows exotic features

in controlling nonlinear dynamics, visualizing optical nonlinear responses and guiding other

light. In the end, a new kind of self-accelerating beams is introduced, exhibiting a mechanism

in analogy to the interaction between matters of opposite mass signs. These nonlinear wave

packets have brought the nonlinear dynamics into a region of a curved space or space-time,

and more fantastic phenomena and applications which are otherwise hard to reach in flat space

are expected.
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I. INTRODUCTION

Inspired by the concept of self-acceleration [1] for

a wave packet found in the potential-free Schrödinger

equation, a laser light shaped by an Airy function was

conceived, namely Airy beam [2,3], featured with an in-

tense peak moving along a ballistic path during the free

space propagation. In the same vein (due to a space-

time duality), an optical pulse with an Airy shape ex-

hibits an accelerating behavior in a dispersive medi-

um. Soon after, this kind of optical fields attracted a

great deal of attention. The exotic property of self-

acceleration, together with the accompanying less d-

iffraction/dispersion and self-healing effect, led the Airy

beam/pulse to show unexpected advantages in a vari-

ety of applications such as in optical manipulation [4,5],

imaging [6−8], material processing [9], signal transmis-
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sion [10−12] and optical bullet [13,14]. In turn, these

promising applications promoted more extensive stud-

ies on the design and generation of other types of accel-

erating beams and their ramifications (see the reviews

in [15−17] and the references within).

Apart from the intensive studies in the linear

regime, numerous investigations on the nonlinear dy-

namics of optical Airy wave packets were carried on in

parallel. In the spatial domain, Airy beams were em-

ployed to produce curved filamentation [18−20] and were

widely examined in various nonlinear environments of-

fered by different types of nonlinearities, such as Kerr,

saturable, quadratic, and nonlocal nonlinearity [21−31].

In the temporal domain, the Airy pulses were most-

ly explored in nonlinear optical fibers [32−45]. Novel

applications were put forward in terms of wavelength

conversion and pulse control [46,47]. Besides, the non-

linear dynamics of Airy-pulse related novel fields were

also studied [13,48]. Indeed, the Airy wave packets are

the eigenmodes of a linear system (i.e., described by

a Schrödinger-like equation). Consequently, as shown

in most studies, they tend to lose their peculiar struc-

tures under the action of the nonlinearity and cease to

accelerate, for instance, by transforming most of their

power into other nonlinear entities such as solitons.

To keep the acceleration, one need resort to the so-

lutions satisfying the nonlinear Schrödinger-like equa-

tion. With this motivation, nonlinear accelerating wave

packets were created fitting to various types of nonlin-

earities. Thanks to these findings, the properties of

self-acceleration can be largely explored in nonlinear

environments, allowing for more novel phenomena and

effects by shaping a nonlinear process in an accelerating

configuration.

In this short review, we discuss the nonlinear accel-

erating optical fields and the applications they brought

about, by focusing more on our recent works pertinen-

t to this area. The organization of the review is as

follows: In Section II, a theoretical basis is provided to

highlight the physical picture of the nonlinear accelerat-

ing waves; in Section III, we show unexpected nonlinear

phenomena and effects associated with the acceleration,

focusing on the visualization of a nonlinear response; in

Section IV, we discuss the light-by-light control realized

by nonlinear accelerating beams/pulses; in Section V,

a new kind of self-accelerating state is introduced, ex-

hibiting a mechanism in analogy to the interaction be-

tween matters having opposite mass signs; in Section

VI, we conclude the review and give an outlook on the

nonlinear accelerating optical fields.

II. THEORY ON NONLINEAR
ACCELERATING WAVE PACKETS

Considering the law of momentum conservation,

people earlier believed that nonlinear self-trapped

beams with acceleration could only exist in asymmetric

nonlinearities. Such states were found for the first time

in photorefractive medium owned to a small asymmet-

ric contribution from the diffusion effect [22]. But later

on, optical self-accelerating self-trapped beams were al-

so proposed in symmetric nonlinearities including Ker-

r, saturable types, etc [49−52]. In the following, we will

briefly introduce the associated theoretical findings and

their connection with the Airy solutions.

In general, the nonlinear optical dynamics can be

simply described by the nonlinear Schrödinger equa-

tion. With different types of nonlinearities, this equa-

tion has a generalized form, namely the generalized

nonlinear Schrödinger equation:

∂ψ

∂ζ
=
i

2

∂2ψ

∂ξ2
− if(I)ψ (1)

where ψ represents a wave packet, ξ indicates the nor-

malized temporal or spatial transverse coordinate, and

ζ is the normalized propagation distance. f(I) is a real-

valued algebraic function representing different types of

nonlinearities and I = |ψ|2 is the wave intensity. It is

possible to transform the original coordinates into an

accelerating frame by using s = ξ − hζ2/2 (h is a con-

stant), and ψ = u(s) exp(ih2ζ3/6 + ihζξ) (where u is a

real-valued function), Eq.(1) is then rewritten as in a

steady state:

d2u

ds2
− 2hsu− 2f(I)u = 0 (2)

Obviously, a gravity-like potential is introduced in this

accelerating system. Without loss of generality, h is

set to be positive. Under the linear condition (i.e.,

f(I) = 0), an Airy solution exists, consisting of a

main lobe and infinite sub-lobes towards the left [Fig.
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FIG. 1. Self-accelerating optical fields in linear and nonlinear environments. Top and bottom rows present the typical
intensity profiles and the associated propagations, respectively. From left to right correspond to the linear, weak self-focusing
and self-defocusing cases. The red shaded area in (a1) shows the gravity-like potential introduced in the accelerating frame.

1(a1)]. One can attribute the semi-infinite profile to

the fact that only the right side of a wave experiences

an infinite potential barrier [Fig. 1(a1)]. An optical

beam reshaped as the Airy function can keep the trans-

verse acceleration and diffraction-free propagation in

the laboratory coordinate [Fig. 1(a2)]. Then we turn

to the nonlinear regime (f(I) ̸= 0). As a typical ex-

ample, the Kerr nonlinearity (i.e., f(I) = n2I, where

n2 is the nonlinear coefficient) is considered. Nonlin-

ear self-accelerating beams are obtained numerically.

Since the nonlinearly induced potential does not alter

the infinite nature of the barrier considering the inten-

sity limit of waves, these modes have structures sim-

ilar to the Airy case, but in comparison, their main

lobes exhibit shrinking and broadening changes under

the self-focusing and -defocusing nonlinearities, respec-

tively [Figs. 1(b1) and 1(c1)]. Like the self-accelerating

behavior of the Airy wave packets, these nonlinear self-

accelerating beams propagate stably along the same

parabolic trajectory in the associated nonlinear envi-

ronments. However, under a strong self-focusing condi-

tion, the nonlinear states are unstable, and the intense

lobes of the beam tend to form solitons emitting in var-

ious directions [49].

The method to solve the nonlinear self-accelerating

modes was extended into other optical systems where

the nonlinearity is not simply described by a real-valued

algebraic function. In quadratic media, the first and

second harmonics show a propagation of a joint accel-

eration, but their intensity peaks are asynchronous with

respect to each other [24,25]. Under a highly nonlo-

cal nonlinearity, self-accelerating nonlinear modes ex-

ist by reducing the associated nonlinear system in-

to a linear model called Snyder–Mitchell model [53].

With the help of nonlocality, the stationary accelerat-

ing propagation of two dimensional (2D) Airy beams in

strong self-focusing medium can be obtained [29]. Be-

sides, nonlinear counterparts of non-paraxial accelerat-

ing beams [54,55], an extension of the Airy case into the

non-paraxial condition, were also realized [56−58]. A-

part from the continuous cases, accelerating Wannier-

Stark states were also demonstrated in discrete photon-

ic lattices [59,60].

III. ACCELERATING NONLINEAR
PROCESSES

Under a mild nonlinearity, an Airy wave packet can

still keep the acceleration. When the nonlinear strength

is sufficiently large, both theory and experiment have

indicated that this optical field deforms inevitably and

fails to accelerate in a shape-preserving form [21,23]. In

particular, the phenomenon of soliton emission appears

in a strong self-focusing regime. Such dynamics have
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been investigated in both Kerr and photorefractive me-

dia [61−63].

Fortunately, recent work has demonstrated that,

during the propagation, a modulated Airy wave pack-

et can avoid the deformation and keep the acceleration

under an adiabatic condition [51]. Similar to the evo-

lution from a Gaussian beam into a soliton, the modu-

lated Airy field tends to evolve into the nonlinear self-

accelerating wave packet. Along this line, nonlinear

accelerating beams/pulses with an intense peak inten-

sity become realistic, which is beneficial to study novel

nonlinear phenomena caused by the acceleration.

Resorting to the nonlinear self-accelerating opti-

cal fields, nonlinearly induced dipole can be generated

to move in an accelerating configuration, probably re-

shaping its radiation. For instance, we consider the op-

tical Cherenkov radiation in fibers [44], where the light-

induced dipole radiates dispersive waves (DWs) under

the action of higher order dispersions. For an input

pulse shaped as a fundamental soliton, it emits a DW

that is similar to a plane wave radiation, as the solition

moves at a constant velocity. By means of a modulated

Airy pulse, the resulting DW converges at a spatiotem-

poral location. Such DW focusing dynamics can be fur-

ther controlled by changing the parameters of the pulse.

Via turning up the input power or decreasing the phase

modulation depth, the acceleration of the pulses tend-

s to increase, thus leading to a stronger DW focusing.

These results pave a way to control the radiation by

means of nonlinear accelerating pulses. Quite recently,

such kind of optical acceleration was also employed to

realize synchrotron radiation in both temporal [45] and

spatial [64] domain.

Under a strong self-defocusing nonlinearity, a so-

lution having sufficiently wide main lobe should ex-

ist in Eq.(2). Consequently, the diffraction/dispersion

term in Eq.(2) may be safely neglected, leading to a

pure nonlinear effect in the nonlinear state. Using the

Thomas-Fermi approximation, one has [hs+ f(I)]u =

0 that is only satisfied when hs + f(I) = 0. Then the

following formula is reached:

s = −f(I)/h (3)

where one can infer that it is possible to map a non-

linear response to a real dimension (space or time) [65].

FIG. 2. Upper three rows: Nonlinear output of a modulated
Airy pulse (left) and beam (right) experiencing the Kerr
and the photorefractive self-defocusing nonlinearity that is
strengthened from top to bottom, respectively. T (or x) is
the time delay (or transverse coordinate). The beam profiles
in (d-f) are obtained by integrating the captured output
beam patterns in the corresponding insets. The dashed red
lines are used for fitting the right sides of the main lobes.
(g) and (h) show the similarity between the fitting data and
the target nonlinear response functions.

To verify this prediction, an experiment is performed in

a 3.9-km nonlinear optical fiber to test the Kerr-type

nonlinearity. The probe pulse is positioned in the nor-

mal dispersion region to gain a self-defocusing nonlin-

earity. As mentioned at the beginning of this Section,

it is possible to approach the nonlinear mode via the

adiabatic evolution of a modulated Airy field. To this

end, in the linear case, an Airy pulse is delivered to

the fiber output by employing a quadratic phase. Un-

der the action of the self-defocusing nonlinearity, the

output pulse shows a broadening as the input power

is turned up [Figs. 2(a-c)]. As expected, their trail-

ing edges are fitted well with the Kerr response func-

tion. Next, the mapping experiment is also performed

in the spatial domain for a photorefractive nonlinear-

ity offered by a photorefractive crystal (SBN: 61 with

dimensions 5 × 5 × 10 mm3). The associated response

function is expressed by f(I) = −0.5n3γ33Ee/(1 + I),

where n is the unperturbed refractive index, γ33 is the

electro-optic coefficient for the extraordinarily polar-

ized beams, and Ee is the external bias field. The probe

Airy beam is generated by using a properly titled cylin-
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drical lens [66], having an Airy shape horizontally yet

keeping quasi-invariant vertically. Before the nonlinear

test, the crystal is adjusted to allow the peak intensi-

ty of the Airy beam to appear at the exiting face for

the purpose of the adiabatic evolution. As the bias field

increases, the main lobe of the output exhibits a broad-

ening effect, yet in a scenario different from the Kerr

case. By using Eq. (3) to fit the right side of the beam

profile, the good fitting indicates that the photorefrac-

tive nonlinear response is also mapped to the nonlinear

output [Figs. 2(d-f)].

To characterize the similarity between the ex-

perimental curves and the corresponding target re-

sponse function, a parameter Q defined as Q = 1 −√
Σ(F − I)2/ΣF 2 is used, where F describes the fit-

ting values. Note that lager Q indicates a higher sim-

ilarity and Q = 1 reflects an exact overlapping. The

associated calculations are summarized in Figs. 2(g)

and 2(h). For the Kerr case, the value of Q is posi-

tively proportional to the strength of the nonlinearity

until the input power is turned up to 4 mW where a

saturation starts [Fig. 2(g)]. For the photorefractive

case, Q keeps going up with the bias field yet does not

reach a saturable level in the range of applied voltages

[Fig. 2(h)]. Additional simulations show that the satu-

ration is possible for further increasing the voltage, but

in experiment, it is better to avoid this test due to a

possible depolarization of the crystal.

The above theory and experiments both indicate

that the nonlinear response function can be visual-

ized by using a probe of a modulated Airy field. Up

to now, only the case of self-defocusing nonlinearity

is discussed. It is also possible to visualize a non-

linear term in a physical system that originally lead-

s to self-focusing nonlinear dynamics. This can be

achieved by reversing the sign of the associated disper-

sion/diffraction to satisfy the condition of an equivalent

self-defocusing evolution.

IV. LIGHT-BY-LIGHT CONTROL

The implementation of the Airy beams/pulses for

controlling signals has shown its infancy in recent years.

In spatial domain, the Airy beams are good candidates

for all-optical routing technique and all-optical inter-

connections [10,11]. In the temporal case, it is shown

that the Airy pulse can be used to control a soliton via

an event horizon [67]. In much earlier works, Raman

solitons were employed to trap and guide signals, rely-

ing on its decelerating manner, but their acceleration is

difficult to control [68,69]. Alternatively, the Airy puls-

es, featured with a reconfigurable acceleration, have the

ability to realize such steering functions in a more con-

trollable way [70,71].

To have a better understanding on the pulse-by-

pulse control, simulations are performed by using the

following equations:

i
∂A

∂z
=
β2A
2

∂2A

∂T 2
+ i

β3A
6

∂3A

∂T 3
− γA|A|2A (4a)

i
∂B

∂z
=
β2B
2

∂2B

∂T 2
+ i

β3B
6

∂3B

∂T 3
− 2γB |A|2B (4b)

where A and B are the envelopes of an Airy and a sig-

nal pulse, respectively, z is the propagation distance

in lab frame, β2A and β2B (β3A and β3A) are the co-

efficients of the second-order (third-order) dispersion,

and γA = γB = γ are the nonlinear coefficients. Mild

input power is injected for the Airy pulse to keep its

acceleration in the self-focusing nonlinear propagation,

while the signal pulse having a quite low power does not

feel any nonlinearity. The two pulses co-propagate in a

fiber. Figures 3(a-c) display the evolution of the signal

with different time delays to the Airy pulse whose main

peak is traced out by the white dash lines. For near ze-

ro time delay, the signal pulse can be almost totally

trapped and guided [Fig. 3(a)]; while for the other cas-

es, only part of the signal is forced to co-accelerate with

the Airy pulse [Figs. 3(b) and (c)]. These dynamics are

clearly revealed in the measured spectra of the signal

[Fig. 3(d)]. A significant red-shift wavelength conver-

sion is realized for the signal having near zero time de-

lay to the Airy pulse. In the same vein, a blue shift is

also reached by reversing the acceleration sign of the

Airy pulse [Fig. 3(e)]. Furthermore, such wavelength

conversion can be tuned by changing the acceleration

strength of the Airy pulse. Via decreasing the modula-

tion depth defined by a (corresponding to the increase

of the acceleration) while keeping near-zero time delay

of the two pulses, the signal is transferred to a shorter

wavelength [Fig. 3(f)].
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FIG. 3. (a-c) Simulated propagation of a single-peak signal pulse co-propagating with an Airy pulse (whose main lobe is
traced out by the white dotted lines) for different initial time delays of the two pulses. (d-f) Measured output spectra of
the signal with different initial time delays to the Airy pulses that have opposite acceleration signs (d,e), or with near-zero
time delay yet using different values of the acceleration (f). (g) Simulated guiding and routing of a double-peak signal. (h)
and (i) show the input and output spectra obtained from the simulation/experiment corresponding to (g), respectively.

Inspired by the fact that a conventional (straight)

spatial waveguide can support higher-order as well as

fundamental modes, the accelerating potential is ex-

pected to trap and guide multi-peak signals. For the

same nonlinear Airy pulse, a double-peak signal of such

dynamics is found numerically [Fig. 3(g)]. In experi-

ment, a signal having the spectral shape [Fig. 3(h)]

associated with the numerical input is launched. At

the output, it exhibits a red shift after a 4-km evolu-

tion in the presence of the Airy pulse, while still pre-

serves its double-peak feature [Fig. 3(i)], attributing to

the guiding effect of the accelerating potential. Addi-

tional simulations show that a much higher order mode

such as three-peak signal cannot be supported, since

the index change induced by the Airy pulse is not quite

high under a mild nonlinearity. The mechanism of this

guidance is similar to the cases by means of Raman

solitons [72,73].

Apart from the aforementioned steering function,

nonlinear interactions involving accelerating beams in-

deed have led to many novel dynamics. Airy fields

were also utilized to manipulate solitons in differen-

t nonlinear environments [67,74,75]. Soliton pairs were

routinely generated for the interaction of two (or more)

Airy beams in strong self-focusing regime. The emit-

ting solitons exhibit attraction and repulsion for in-

phase and out-of-phase of the Airy inputs, respective-

ly [76−79], while always show attractive behavior for

mutually incoherent Airy beams [80]. The spatiotem-

poral dynamics of two incoherent counterpropagating

Airy beams are proved to be different from the cas-

es associated with Gaussian beams [81,82]. In addi-

tion, Airy breathers can be observed and remain ro-

bust even under a strong nonlinear condition [83−85].

In the case of nonlocal nonlinearities, one can emulate

gravitational phenomenon by studying the evolution
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of a broad accelerating wave packet interacting with

an intense Gaussian beam. This system is analogous

to the Newton–Schrödinger one, simulating gravity in

the Newtonian limit together with quantum mechan-

ics [86]. In photorefractive crystals, the possibility of

optical waveguiding via the Airy beams has been dis-

cussed in both symmetric and anti-symmetric configu-

rations [11,87]. Quite recently, pattern-forming dynam-

ics were investigated by injecting 2D Airy beams in-

to a nonlinear single feedback setup where two-wave

mixing and modulation instability were involved. The

self-organization was accompanied by a natural drifting

process related to the intrinsic acceleration of the Airy

beam, and the drifting dynamics can be controlled by

the parameters of the Airy beam itself [88].

V. OPTICAL DIAMETRIC DRIVE
ACCELERATION

For the Airy-like nonlinear accelerating optical

fields, only the most intense part exhibits an accel-

eration, but the overall profile still evolves along a s-

traight line. One may wonder whether the beam/pulse

can be designed to show a full acceleration. Such op-

tical dynamics become real by introducing the concept

of runaway motion [89], where matters having oppo-

site mass signs show a joint acceleration during their

interaction. This intriguing behavior originates from

the non-intuitive effect brought by negative mass. The

action-reaction symmetry, governed by Newton’s third

law, is broken in such a captivating motion. In optic-

s, the pulses experiencing dispersion of opposite signs

show the analogous dynamic behavior for the objects

of opposite mass signs. During their nonlinear inter-

action in fibers, they are bounded to accelerate in the

same direction [90,91], namely optical diametric drive

acceleration. Quite recently, this intriguing interaction

was also realized in the spatial domain, by employing

optical beams experiencing normal and anomalous d-

iffractions of an optical lattice in analog to objects of

opposite mass signs [92−94]. The reciprocal property of

interactions can be also broken by presetting the asso-

ciated forces to be the same direction in liquid crystal-

s [95]. It is worth noting that, other than a diametric

drive acceleration, the interaction between solitons hav-

ing effective mass of opposite signs allows for shuttle

motions and splitting when the nonlinearity and mass

are carefully tuned in Bose-Einstein condensates [96].

By means of the optical coherence, such diametric

drive acceleration was readily extended into the coher-

ent regime [93,94], showing exotic features non-existed

in the classic case. The associated study was per-

formed in a one dimensional (1D) optical lattice fab-

ricated by titanium in-diffusion in a nonlinear photore-

fractive LiNbO3 crystal. The beam propagation in this

optical structure is governed by the paraxial nonlinear

Schrödinger equation:

i
∂φ

∂z
+

1

2nk0

∂2φ

∂x2
+k0C cos2(πx/Λ)φ = Γ

|φ|2

1 + |φ|2
φ (5)

where φ is the slowly varying complex amplitude of an

incident beam, x (or z) is the transverse (or longitudi-

nal) coordinate, k0 is the wave number in the vacuum,

and n is the unperturbed refractive index of the crys-

tal. The periodic potential associated with the photon-

ic lattice is approximately modeled by a cos2 function

with C being the lattice modulation depth and Λ be-

ing the lattice constant. The nonlinear coefficient is

Γ = k0nγ33Epv/2, where γ33 is the electro-optical co-

efficient, and Epv is the photovoltaic field. Figure 4(a)

shows a schematic diffraction relationship of a 1D opti-

cal lattice in the first Brillouin zone (BZ). The diffrac-

tions at the top (Γ point) and the bottom (M point)

edges exhibit opposite signs. The beams exciting the

two points are named as Γ-beam and M-beam. Their

experimental intensity patterns are displayed in Fig.

4(b). As presented in Ref. [92], Γ- and M-beams show

inverted behaviors when encountering a negative index

change embedded in a uniform lattice. The former

tends to be repelled while the latter tends to be at-

tracted. Under the action of the self-defocusing nonlin-

earity arising from the bulk photovoltaic effect, both Γ-

and M-beams induce negative refractive index changes.

When the two beams propagate together with a proper

spacing, they can shift to the same transverse direction

due to the symmetry breaking of action-reaction. If the

initial condition is elaborately chosen, the two beams

are able to bind to accelerate together. Experiments

are operated in a 1.4-cm-long sample. The two mutu-

ally coherent beams with a proper spacing are launched

simultaneously into the waveguide array with an equal
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FIG. 4. Typical first Bloch band of 1D photonic lattices, where the normal and anomalous diffraction regions separated
by zero-diffraction points (black), are shaded in red and blue. (b) Measured Γ- and M-beams at the input. (c,d) Temporal
evolution of the output beam under the action of the nonlinearity when the initial spacing (D) between the two input beams
is about six times of the lattice constant (c) and zero (d), respectively, where the yellow lines mark the “center of mass”.
(e,f) show the numerical simulations of the beam propagations in a steady state corresponding to (c,d), respectively. (g,h)
Spatial spectral evolution corresponding to (e,f). The dashed white lines in (e-h) mark the output location of the sample.

phase. Taking the advantage of noninstantaneous pho-

torefractive response, the temporal evolutions of the

beams exiting the lattice are recorded. As summa-

rized in Fig. 4(c), the combined output evolves from

a widely spread distribution to a somewhat localized

pattern, meanwhile the overall beam center (defined as∫
xdx
∫
Idy/
∫ ∫

Idxdy, where I is the light intensity)

at the steady-state moves along -x direction. The lo-

calization is attributed to a discrete self-trapping, while

the lateral movement of the whole beam is caused by

that its two components with opposite diffraction signs

break the action-reaction symmetry during interaction.

For comparison, the output for the two beams having

zero spacing is presented in Fig. 4(d), where the lateral

shift of the beam center is almost not noticed.

Numerical beam propagations simulated by using

Eq. (5) at a distance longer than the sample length are

shown in Figs. 4(e) and 4(f). The combined beam ex-

periences a clear self-accelerating effect for the case of

non-zero spacing between Γ- and M-beams [Fig. 4(e)],

while its pattern always remains symmetrical about

x = 0 for the other case [Fig. 4(f)]. The momen-

tum change of the light is accordingly revealed in the

(spatial) spectrum domain, i.e., in the kx space [Figs.

4(g) and 4(h)]. In the coherent diametric drive acceler-

ation, both spectral components located at the center

and boundary of the 1st BZ exhibit a net shift due to

the self-accelerating effect.
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FIG. 5. (a) Measured output beams exciting the zero-diffraction point for the linear and nonlinear cases. (b,c) Beam center
shifts at the output for different input tilts (b) and different evolution time (c). (d) Numerical propagation of a spontaneous
diametric drive acceleration, where the insets show the beam profiles in the normal and anomalous diffraction regions at
z = 0 and 1.4 cm. (e) Numerically calculated beam center shifts at the output for various coherence degrees.

For different phase differences initially set between

the two input beams, the overall beam center changes

hardly [93]. The phase insensitive behavior for the beam

interactions is attributed to the beating effect of Γ- and

M-beams along the waveguide array. The coherent dia-

metric drive acceleration always shows a larger shift of

the beam’s central position comparing to its incoherent

counterpart (where the two input beams are switched

into a mutually incoherent regime [92]).

It should be noted that the normal and anoma-

lous diffraction regions are separated by a special point

named zero-diffraction point [Fig. 4(a)]. A single beam,

launched near this point, should cover both diffraction

regions, leading to a possibility to form the ingredi-

ents required for an optical diametric drive accelera-

tion. Thus, the beam may show a spontaneous bend-

ing under the action of a nonlinearity [94]. Figure 5(a)

shows the experimental outputs in the linear and non-

linear cases by employing a Gaussian beam to excite

the zero-diffraction point. A clear transverse movemen-

t of beam is observed as the nonlinearity takes effect.

The parameter δ is used to characterize the beam de-

flection, defined by the difference between the beam

centers for the linear and nonlinear outputs. The in-

fluence of the input beam tilting on the spontaneous

bending propagation is examined. The optimized value

appears near the tilt exciting the zero-diffraction point,

i.e., q = −0.75π/Λ [Fig. 5(b)]. Furthermore, using this

optimized tilt, the influence of the nonlinear strength is

studied. As time flies (corresponding to strengthening

the nonlinearity with the help of a photorefractive ef-

fect), the beam center shift continuously increases until

a steady state is reached [Fig. 5(c)].

The mechanism behind the spontaneous bending

is understood by further analyzing the real space evo-

lution of the components experiencing different types

of diffractions. Initially, the two components overlap

exactly. During the nonlinear interaction, they fail to

occupy the same location. Specifically, under the self-

defocusing nonlinearity, the negative index change in-

duced by the component in the anomalous (normal) d-

iffraction region is able to repel (attract) the part expe-

riencing the normal (anomalous) diffraction. The part

in the normal diffraction region prefers to stay at on-

ly one side [here right side as shown in the inset of

Fig. 5(d)] of the other part, since its self-defocusing

evolution is asymmetric near the zero-diffraction point

where the maximum beam tilt in the photonic lattice

is defined. Consequently, they constitute a pair similar

to that in a coherent diametric drive acceleration [93]

and move jointly in a self-accelerating manner during

the following propagation. Finally, the incoherence is

taken into account for studying the spontaneous effect.

The visibility V is employed to characterize the coher-

ence of the input beam. Larger value of V corresponds

to a higher degree of coherence. Simulations presented



172 Jia Peng-Bo et al.: Nonlinear Self-Accelerating Optical Fields and Their Applications

in Fig. 5(e) show that the beam center shift decreases

as the coherence is reduced, indicating a weaker dia-

metric drive acceleration. But for a mild incoherence

degree (say, V > 0.6), the accelerating strength is still

considerable.

VI. CONCLUSION

In this short review, we have briefly discussed the

nonlinear self-accelerating wave packets and their appli-

cations. They brought about exotic features by shap-

ing the nonlinear processes into an accelerating man-

ner, and along this line, various appealing applica-

tions were put forward. Recently, a new kind of self-

accelerating wave packets based on a runaway mecha-

nism was demonstrated, allowing for more possibilities

to study nonlinear dynamics in a curved space or space-

time. Comparing to the numerous investigations on the

nonlinear dynamics of Airy wave packets focusing on

their field structures, the acceleration property of self-

accelerating wave packets is still much less explored.

As the unique property for these beams/pulses, the ac-

celeration may bring about more unexpected nonlinear

phenomena and effects that do not exist for the case of a

straightly moving intense peak. So far, the accelerating

nonlinear process has been mainly studied in a 2D con-

figuration including one evolution dimension and one

space or time. Extending to higher dimensions, more

novel dynamics will be expected with the blooming of

intriguing optical fields in common with the Airy wave

packets.
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非非非线线线性性性自自自加加加速速速光光光场场场及及及其其其应应应用用用

贾鹏博，裴雨苗，张 平，李致力，胡 毅，许京军

弱光非线性光子学教育部重点实验室，南开大学物理学院，天津 300071
南开大学泰达应用物理研究院，天津 300457

摘摘摘要要要: 近年来，艾里光束/脉冲等光场因其独特的自加速传输特性以及在诸多应用中表现出的优势

引起了人们极大的研究兴趣。但在非线性环境中，这类光场却面临失去其特殊结构以及加速特性的

困境。为了解决这一问题，非线性自加速光场应运而生，使得非线性过程具有加速的特质。本文基

于作者近期的工作回顾了非线性自加速光场的研究进展。首先讨论了它们的物理图像以及它们与艾

里光场的联系，其次详细介绍了自加速特性在非线性调控、非线性响应函数的可视化以及光控光中

的独特应用优势，最后介绍了一种新式的光场自加速行为 —— 可类比于经典力学中正负质量物质

的相互作用过程。这些非线性自加速光场可让非线性动力学过程在弯曲时/空发生，能引起平坦空间

无法实现的新现象与新应用。

关关关键键键词词词：：：光场调控；非线性光动力学；艾里光场；自加速
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