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Multi-wave mixing (MWM) is an important nonlinear optical process, and has significant applications
in nonlinear optics and quantum information science. This article reviews these advances and recent
development in this field. In the frequency domain, the coexistence of four-wave mixing (FWM)
and six-wave mixing (SWM) is first experimentally demonstrated via electromagnetically ally induced
transparency, and in addition mutual competition with energy as well as exchange spatio-temporal
interference is also observed. Furthermore, the enhancement and suppression between the competing
FWM and SWM and corresponding Autler-Townes splitting have been experimentally obtained. In the
spatial domain, the electromagnetically induced grating resulted from interference between two pump
beams is studied, and the related spatial properties (e.g. “shift” and “splitting”) of MWM are also
involved. Also spatial gap solitons, vortex solitons, charged dipole-mode solitons, and two-dimensional
surface solitons are obtained. Such concepts can be extended to quantum area, and the corresponding
effects mentioned above can be investigated. The review also includes a discussion of future prospects
and application potentials of MWM in cavity QED, the Rydberg states, and all-solid-state quantum
computing.
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I. INTRODUCTION

Enhanced nonlinear processes due to atomic coher-
ence have been experimentally demonstrated in sev-
eral multilevel atomic systems. The keys to such
enhanced nonlinear optical processes include the en-
hanced nonlinear susceptibility due to the induced
atomic coherence and slowed laser beam propagation
in the atomic medium, as well as greatly reduced lin-
ear absorption of the generated optical field due to
electromagnetically induced transparency (EIT)[1,2].
On the other hand, two-photon and three-photon de-
structive interferences have also been studied in vari-
ous four-level Y-type[3], N-type[4], and double-type[5,6]

atomic systems. The generation of six-wave mixing
(SWM) in a closed-cycle N-type system[7] and eight-
wave mixing (EWM) in a folded five-level atomic
system[8] has been experimentally demonstrated re-
cently. In the previously studied close-cycled (lad-
dertype, N-type, double-Λ-type, and folded) systems,
the four-wave mixing (FWM), SWM, and EWM pro-
cesses cannot coexist in a given configuration and
different order nonlinearities can only be observed
individually. In our recent studies, distinctly dif-
ferent from and advantageous over the previously
reported SWM processes[7,9], generating highly effi-
cient FWM, SWM, EWM processes simultaneously
in an open-cycle Y-type atomic system was experi-
mentally demonstrated[10,11]. We also demonstrated
that the third-order and fifth-order nonlinear pro-
cesses can coexist in open (such as V-type, Y-type,
and inverted Y-type) atomic systems. The coexist-
ing SWM processes can become comparable with or
even greater than the companion FWM processes in
amplitude by manipulating the atomic coherence and
multi-photon interferences between different energy
levels in the systems[10,12,13]. Such coexistence of
FWM and SWM processes allows us to investigate
spatio-temporal coherent interference between FWM
and SWM processes[14], and to obtain the beat sig-
nal between them to get the χ(5) coefficient. Such
a coherent control technique has been used to con-
trol the transition probability in atoms[15], photo-
electron angular distribution[16], phase-controlled cur-
rent in semiconductors[17], and various chemical re-
actions. Also, a fifth-order time-frequency Raman
spectroscopy technique was used to study the two-
quantum transition or Raman overtone for the rephas-
ing pathway[18].

As two or more laser beams propagate through an
atomic medium, the cross-phase modulation (XPM),
as well as the modified self-phase modulation (SPM),
can significantly affect the propagations and spa-
tial patterns of the traveling laser beams. Self-
focusing[19], deflection[20], breaking[21], and pattern
formation[22,23] of laser beams have been extensively
studied with two laser beams propagating in two-
level atomic vapors. It has been shown that the self-
and cross-Kerr nonlinearities can be significantly en-
hanced and modified in three-level atomic systems
due to laser induced atomic coherence or EIT[24∼26].
At the same time, enhanced FWM[5], EIT-induced
waveguide effect[26], as well as elimination of beam
filamentation[27,28] were observed in atomic system.
Such sharp nonlinear dispersions in frequency domain
of EIT systems can be converted into spatial domain
for probe and FWM signals[24,29], which exactly mim-
ics the dispersion curve for the Kerr nonlinear index of
refraction controlled by the strong coupled laser beam.
Also, spatial splits of degenerate and non-degenerate
FWM signals have been theoretically simulated and
experimentally demonstrated[30]. Such electromag-
netically induced spatial dispersion (EISD) can be
used for spatial switching and routing, and as an easy
way to measure the Kerr-nonlinear indices of refrac-
tion for the multi-level atomic media.

Spatial optical soliton[31] is formed when the spa-
tial diffraction is balanced by either the self-focusing
effect due to the self-Kerr nonlinearity or the cross-
focusing effect due to strong XPM nonlinearity[32]. In
recent years, new type spatial solitons, such as discrete
solitons[34,34], gap solitons[35] have been investigated
(both theoretically and experimentally) in waveg-
uide arrays, fiber Bragg gratings[36], Bose-Einstein
condensates[37], and photorefractive crystals[33,34].
Band gaps of the linear spectra are essential for the
formation of the gap solitons, which is originated
from the periodical structure in fiber Bragg gratings,
photonic crystals[28], and even the standing wave in
an atomic ensemble[38]. Therefore, large refractive
index modulations are needed either by fixed peri-
odic structures (such as waveguide arrays) or reconfig-
urable optical lattices induced by laser beams. Vor-
tex soliton is generated in a self-defocusing medium
owing to the counterbalanced effects of diffraction
and nonlinear refraction at the phase singularity[39].
Several interesting effects including cascade genera-
tion of multiple charged optical vortices and helically
shaped spatio-temporal solitons in Raman FWM, and
coupled vortex solitons supported by cascade FWM
in a Raman active medium excited away from the
resonance have been investigated[40,41]. Spatial soli-
tons can split into two parts with opposite phases,
if a phase delay for half of the soliton beam is in-
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troduced, which is called dipole-mode vector soliton
with a Hermite-Gaussian mode structure[42]. In an
optically induced two-dimensional photonic lattice,
dipole-mode solitons can be created with either oppo-
site phases or same phase between the two parts[43].
Vector solitons with one nodeless fundamental compo-
nent and another dipole-mode component can couple
to each other and be trapped jointly in the photonic
lattices[42,44,45]. A radially symmetric vortex soliton
can decay into a radially asymmetric dipole-mode soli-
ton with a nonzero angular momentum, which can sur-
vive for a very long propagation distance[42]. Surface
soliton is formed at the edge of two mediums[37,45∼49].
Different from the case with two uniform media, the
trapping mechanism for optical surface waves formed
at the interface of uniform media and periodical re-
fractive index media is that the propagation eigenval-
ues fall within the photonic band gap (PBG) of the
system[37,50]. There are many new interesting features
in optical surface waves with different kinds of nonlin-
earities, such as nonlocal surface solitons[51], polychro-
matic surface solitons[52], and spatio-temporal surface
light bullets[53]. As an example, one-dimensional (1D)
in-phase surface solitons in the AlGaAs array[54] and
two-dimensional (2D) discrete surface solitons forming
at the corner of a finite optically-induced 2D waveg-
uide lattice and a continuous medium have been ex-
perimentally observed[55,56]. To systematically inves-
tigate these interesting phenomena, it is important to
construct a medium with flexible periodic nonlinear-
ity. Until now, enhanced by laser-induced atomic co-
herences, spatial gap solitons[57], vortex solitons[24,29],
charged dipole-mode solitons[58], as well as 2D surface
solitons are experimentally observed in atomic media.

Investigations on the interactions of doubly dressed
states and the corresponding effects of atomic sys-
tems have attracted many researchers in recent years.
The interaction of double-dark states (nested cas-
cade scheme of doubly dressing) and splitting of a
dark state (the secondarily dressed states) were stud-
ied theoretically in a four level EIT atomic system
by Lukin et al.[59]. Later, the triple-peak absorp-
tion spectrum, which was observed in the N-type
cold atomic system by Zhu et al., verified the exis-
tence of the secondarily dressed states in the nested-
cascade scheme[60]. A similar result was obtained
in the inverted-Y system[61,62]. The doubly dressed
FWM (DDFWM) in the nested-cascade with close-
cycled atomic system[63], parallel and nested-cascade
schemes in an open five-level atomic system was
reported[64]. After that, the similarities and dif-
ferences among these different dressing schemes are
studied in detail[65]. Enhancement and suppression
between the competing FWM[66] and SWM[67] pro-
cesses, as well as the Autler-Townes (AT)[68,69] split-

ting have been experimentally observed. In addi-
tion, due to the interactions of doubly dressed states,
probe transmission, FWM and fluorescence signals
are allowed to transmit through the atomic medium,
and ultra-narrow two-photon fluorescence signal is ob-
tained in a ladder or Y-type atomic system[70].

In the investigation of non-classical optics, for
many decades, spontaneous parametric down conver-
sion (SPDC) in nonlinear crystals has been used as
the standard method to generate nonclassical cor-
related photons. Recently, much research interest
has been drawn to the production of photons with
MWM process. By simultaneously creating a de-
structive interference in absorption and a construc-
tive interference in the nonlinear susceptibility, Har-
ris demonstrated the first FWM experiment in cold
atoms[71], where the generated weak Stokes and anti-
Stokes fields counterpropagate through an optically
thick atomic medium with backward-wave geometry.
Following, Lukin[72] and Kimble[73] realized, control-
lable counter-propagating waveforms[74] and narrow-
bandwidth[75] paired photons with FWM process,
and then two-photon interference of paired photons
with time-frequency and polarization entanglement is
achieved[76]. FWM process in a hot vapor cell can be
used as the basis for constructing a variety of inter-
esting quantum processing devices: a source of spa-
tially broadband twin beams[77], a low noise ampli-
fier for quantum states[78], a device to produce en-
tangled images[79], and a delay line for a portion of
an entangled quantum state[80], noiselessly amplify
complicated 2D images[81] as well as stimulated su-
perluminal pulses with negative group velocities[82].
Moreover, studies on strong coupling between atoms
and cavity field have been very active due to the
importance in fundamental and potential applica-
tions in quantum computation and quantum infor-
mation processing. Normal-mode splitting in ensem-
bles of cold atoms[83,84] and hot atomic vapor cell
have been observed[85,86]. Furthermore, the triply-
resonant atom-cavity system has been experimentally
demonstrated[87]. On one hand, quantum correlated
bright light beams have been also produced with
SPDC inside an optical cavity above its threshold[88],
however, they suffer from the low production rate and
short correlation time for their broad bandwidths[89].
Todate, generating correlated photon pairs by large
photon pair-generation rate with the help of an optical
cavity[90], entanglement amplifier based on two-mode
correlated emission lasers[91], and bright correlated
beams by manipulating the large dispersion of the
intra-cavity medium[92] have been also experimentally
studied. On the other hand, the nonlinear processes
involved the high-excited Rydberg states have at-
tracted a lot of attention. Specifically, dramatic sup-
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pression of ultracold atoms to Rydberg states by laser
excitation has been experimentally demonstrated[93],
where Rydberg atoms strongly inhibit excitation of
their neighbors. Thus, with strong Rydberg-level in-
teractions, single-quantum excitation of a cold atomic
gas is fast prepared, where no more than a single ex-
citation was retrieved[94].

Throughout this review, we present the coherent
control of MWM that arises as a result of EIT and
describe some recent progresses in outline. In the fre-
quency domain, the coexistence of MWM and spatio-
temporal interference will be discussed. Then, the en-
hancement and suppression of coexisting MWM sig-
nals as well as the corresponding AT splitting are pre-
sented. In the spatial domain, EISD which can be
used for describing spatial “shift” and “splitting” of
MWM-, as well as some types of spatial solitons is
discussed. Future prospects and new application po-
tentials of MWM in cavity quantum electrodynamics
(QED) and Rydberg blockade are introduced at last.

The review is constructed as follows: in Sec. II,
we introduce the fundamental theories of nonlinear
susceptibility, undressed MWM and the fundamen-
tal concept of enhancing MWM by dressing effect; in
Sec. III, we discuss the generating highly-efficient co-
existing FWM, SWM and EWM nonlinear processes,
temporal and spatial interferences between FWM and
SWM processes in detail; in Sec. IV, we treat the spa-
tial coherent control of MWM and review the spa-
tial modulation of FWM signal by the EISD in an
atomic medium, including the “shift” and “splitting”
of MWM, spatial gap solitons, vortex solitons, charged
dipole-mode solitons, as well as 2D surface solitons.
Furthermore, the utility of the interactions between
doubly-dressed states and the corresponding effects is
discussed; in Sec. V we turn to the treatment of the
fluorescence accompanying with MWM, the MWM in
cavity, Rydberg MWM, in which the middle case need
the consideration of MWM in few-photon level, where
it is necessary to apply a fully quantum treatment of
the fields. Finally in Sec. VI, we draw conclusions and
discuss future prospects in quantum optics and non-
linear optics as a result of coherent control of MWM.

II. ENHANCED HIGH-ORDER NONLINEAR
SUSCEPTIBILITY

A. Nonlinear Susceptibility

In order to describe an optical nonlinearity more
precisely, we consider how the dipole moment per
unit volume, or polarization P a medium depends
upon the strength of the applied optical field E.

The induced polarization depends nonlinearly upon
the electric field strength described by the relation-
ship P = PL + PNL. Here, PL = P(1), PNL =

P(2)+P(3)+· · · = ε0(X(2) : EE+X(3)
... EEE+· · · ).

In nonlinear optics, the optical susceptibility can be
generally expressed as, χ =

∑∞
j=0 χ(2j+1)|E|2j . The

constant of proportionality χ(1) is known as the linear
susceptibility. The quantities χ(2) and χ(3) are known
as the second- and third-order nonlinear optical sus-
ceptibilities, respectively.

FIG. 1. (a) Schematic diagram for the phase-conjugate
FWM process. (b) Energy-level diagram for FWM in a
close-cycled three-level cascade system

As an important nonlinear phenomenon, in the
weak interaction limit, FWM is a pure third-order
nonlinear optical process and is governed by the third-
order nonlinear susceptibility. Let us consider a spe-
cial case of FWM processes, which involves three laser
fields E1 (k1, ω1), E2 (k2, ω2) and E

′
2 (k

′
2, ω2). Here,

ωi and ki represent the corresponding frequency and
wave vector, respectively. And there is a small an-
gle θ between the input pump laser beams k2 and
k
′
2. The probe laser beam (k1) propagates along a

direction that is almost opposite to that of the beam
k2 (see Fig. 1). The corresponding nonlinear atomic
polarization P3 along the i (i = x, y) direction, from
first-order perturbation theory, is given by

P(3)
i (ωi) = ε0

∑

jkl

χ
(3)
ijkE1j(ω1)E

′∗
2k(ω2)E2l(ω2) (1)

where the third-order susceptibility contains the
microscopic information about the atomic sys-
tem. The susceptibility of the nonlinear tensor
χ

(3)
ijkl(ωF ;ω1,−ω2, ω2) is also related to the polariza-

tion components of the incident and generated fields.
For an isotropic medium, as in the atomic vapor, only
four elements are not zero and they are related to each
other.

For the generated SWM signal, the fifth-order non-
linear polarization along the i (i = x, y) direction is
then given by
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P(5)
i (ω1) = ε0

∑

jklmn

χ
(5)
ijklmnE1j(ω1)E

′∗
2k(ω2)E2l(ω2)E

′∗
3m(ω3)E3n(ω3) (2)

where χ
(5)
ijklmn is the fifth-order nonlinear suscepti-

bility. For an isotropic medium, there are sixteen
nonzero components and only fifteen of them are in-
dependent.

B. FWM Grating

FIG. 2. Schematic diagram of phase-conjugate FWM

As we know in section A, FWM is governed by
third-order nonlinear susceptibility in the weak inter-
action limit. Unlike second-order process, the third-
order process can exist in all media. We now con-
sider a special case of FWM processes with beams
E1(ω1,k1), E2(ω2,k2) and E3(ω3,k3). There exists
a small angle θ between beams k2 and k1. The probe
beam (k3) propagates along a direction that is almost
opposite to that of beam k1 (Fig. 2). Third-order
nonlinear susceptibility can be triply resonant if ωi is
near their respective resonance. Such third-order pro-
cess is even observable with CW laser beams for the
strong resonant enhancement. The output of FWM
can be easily understood if two of the three input
waves interfere and form either a static grating or a
moving grating, which scatters the third input wave
to yield the output wave. As illustrated in Fig. 2, the
grating formed by k1 and k2 scatters k3 yields out-
puts k3 ± (k1 − k2). Altogether, three output waves
with different wave vectors, ks1 = −k1 + k2 + k3,
ks2 = k1 − k2 + k3, and ks3 = k1 + k2 − k3, can be
expected. However, only ks2 = k1 − k2 + k3 always
satisfies the phase-matching condition (∆ks2 = 0).
More specifically, if k1 and k2 have the same fre-
quency (i.e. ω1 = ω2) with a small angle θ between
them, the coherence length of FWM signal at ks2 is
given by lfc = 2c/[n(ω1/ω3)|ω1−ω3|θ2], which is much

larger than that of the other two. Here, the nonlin-
ear interaction between k1 and k2 with an absorb-
ing medium gives rise to the molecular-reorientation
and the thermal non-resonant static gratings (i.e. QM

and QT), respectively. If the frequency difference
∆a = ω3 − ω1 ≈ 0, two resonant moving gratings
QRM and QRT with large angle are formed by the in-
terference between k2 and k3. Beam k1 is diffracted
by them to enhance the FWM signal. Thus, we get
the Rayleigh-enhanced FWM with wave vector ks2

along the direction of k4. While, if the frequency dif-
ference ∆b = ω3 − ω1 − ΩR ≈ 0 (ΩR is the Raman
resonant frequency), one large resonant moving grat-
ing, QR formed by the interference between k2 and k3

will excite the Raman-active vibrational mode of the
medium and enhance the FWM signal (i.e., Raman-
enhanced FWM).

C. Generalized Resonant MWM

FIG. 3. (a) Schematic diagram of phase-conjugate doubly-
dressed (2n) WM. (b) Energy-level diagram for (2n) WM
in a closed-cycle (n + 1)-level cascade system

FIG. 4. Energy-level diagram of a closed-cycle five-level
atomic system
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The atomic coherence effects can be used to enhance
both the FWM process and even higher order nonlin-
ear process as well. In this section, we will introduce
the EIT assisted higher order nonlinear process. The
mathematical structure of the (2n) WM can be ob-

tained with density matrix dynamic equations. First
of all, we obtain ∂ρ̂(t)/∂t = [Ĥ0+Ĥ1(t), ρ̂(t)]/i~−Γρ̂,
where Ĥ1 = −Eµ̂ and ρ̂(t) can be expanded as
ρ̂(t) = ρ̂(0)(t) + ρ̂(1)(t) + ρ̂(2)(t) + · · ·+ ρ̂(r)(t) + · · · .

Therefore we get

i~
∂

∂t
[ρ̂(0)(t) + ρ̂(1)(t) + ρ̂(2) + · · ·+ ρ̂(r)(t) + · · · ] = [Ĥ0 + Ĥ1, ρ̂

(0)(t) + ρ̂(1)(t) + ρ̂(2) + · · ·+ ρ̂(r)(t) + · · · ] (3)

−i~[ρ̂(0)(t) + · · ·+ ρ̂(r)(t) + · · · ]

The series ρ(0) · · · ρ(r) can be obtained by solving the following equations step by step.

∂ρ10

∂t
=

1
i~

[ρ10(E1 − E0)− E(−µ1ρ11 + µ1ρ00 + µ2ρ20)]− Γ10ρ10 (4-1)

∂ρ20

∂t
=

1
i~

[ρ20(E2 − E0)− E(−µ1ρ21 + µ2ρ10 + µ3ρ30)]− Γ20ρ20 (4-2)

·
·
·

∂ρn−1,0

∂t
=

1
i~

[ρn−1,0(En−1 − E0)− E(−µ1ρn−1,1 + µn−1ρn−2,0 + µnρn,0)]− Γn−1,0ρn−1,0 (4-n-1)

∂ρn,0

∂t
=

1
i~

[ρn,0(En − E0)− E(−µ1ρn,1 + µnρn−1,0)]− Γn,0ρn,0 (4-n)

Next, we consider a five-level atomic system in Fig. 4 as a practical example for the above derivation.
So, we can obtain the following equations

∂ρ10

∂t
=

1
i~

[ρ10(E1 − E0)− E(µ1ρ00 + µ2ρ20 − µ1ρ11)]− Γ10ρ10 (5-1)

∂ρ20

∂t
=

1
i~

[ρ20(E2 − E0)− E(µ2ρ10 + µ3ρ30 − µ1ρ21)]− Γ20ρ20 (5-2)

∂ρ30

∂t
=

1
i~

[ρ30(E3 − E0)− E(µ3ρ20 + µ4ρ40 − µ1ρ31)]− Γ30ρ30 (5-3)

∂ρ40

∂t
=

1
i~

[ρ40(E4 − E0)− E(µ4ρ30 − µ1ρ41)]− Γ40ρ40 (5-4)

In the bare-state picture, the atomic polarization
and population equations of motion (atomic response)
are considered up to different orders of Liouville path-

ways. Thus, we can employ perturbation theory to
calculate the density-matrix elements. In this five-
level system as shown in Fig. 4, the perturbation
chains are written as following,
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I : ρ
(0)
00

ω1−→ ρ
(1)
10

ω2−→ ρ
(2)
20

−ω2−−−→ ρ
(3)
10

II : ρ
(0)
00

ω1−→ ρ
(1)
10

ω2−→ ρ
(2)
20

−ω3−−−→ ρ
(3)
30

ω3−→ ρ
(4)
20

−ω2−−−→ ρ
(5)
10

III : ρ
(0)
00

ω1−→ ρ
(1)
10

ω2−→ ρ
(2)
20

−ω3−−−→ ρ
(3)
30

ω4−→ ρ
(4)
40

−ω4−−−→ ρ
(5)
30

ω3−→ ρ
(6)
20

−ω2−−−→ ρ
(7)
10

Here, to proceed further, and to simplify the math-
ematics, we will neglect the ground-state depletion
(ρ(0)

00 ≈ 1) and not consider the propagation char-
acteristics of the pulsed pump, probe and FWM
fields. Also, we only retain the resonant dipole in-
teraction terms in the derivation of the complex sus-

ceptibility, known as the rotating-wave approxima-
tion (RWA). Because of the selectivity imposed by the
RWA, each pulse interaction contributes in a unique
way to the phase matching direction of the nonlin-
ear signal. Chains (I)-(III) correspond to the FWM,
SWM and EWM processes, respectively. Finally, we
obtain

ρ
(3)
10 =

−iG1G2(G
′
2)
∗eikF·r

(Γ10 + i∆1)2[Γ20 + i(∆1 + ∆2)]
(6)

ρ
(5)
10 =

iG1G2(G
′
2)
∗G3(G3)∗eikS·r

(Γ10 + i∆1)2[Γ20 + i(∆1 + ∆2)]2[Γ30 + i(∆1 + ∆2 −∆3)]
(7)

ρ
(7)
10 =

−iG1G2(G
′
2)
∗G3(G3)∗G4(G4)∗eikE·r

(Γ10 + i∆1)2[Γ20 + i(∆1 + ∆2)]2[Γ30 + i(∆1 + ∆2 −∆3)]2[Γ40 + i(∆1 + ∆2 −∆3 + ∆4)]
(8)

where, kF = k1 +k2−k
′
2, kS = k1 +k2−k

′
2 +k3−k

′
3,

kE = k1 + k2 − k
′
2 + k3 − k

′
3 + k4 − k

′
4.

FIG. 5. Double-sided Feynman diagrams. (a), (b) and (c)
represent FWM, SWM and EWM processes, respectively

The response functions (ρ(3)
10 , ρ

(5)
10 , ρ

(7)
10 ) of the per-

turbation chains (I)-(III) are given by using double-
sided Feynman diagrams (DSFD) as shown in Fig. 5.
The time evolutions of the density-matrix elements of

the optically driven atoms or molecules can be rep-
resented schematically by either the Liouville space
coupling representation [chains (I)-(III)], or the DSFD
(Fig. 5). Each diagram represents a distinct Liouville
space pathway. We show the diagrammatic represen-
tations corresponding to the three, five, and seven or-
ders of the resonant dipole interactions applied to the
atomic system with five electronic states. In the Li-
ouville space coupling representation. the state of the
system is designated by a position in Liouville space,
with indices corresponding to the ket-bra “axis”. Up
and down transitions on the ket are excited by pos-
itive and negative frequency fields, whereas negative
and positive frequency fields induce up and down tran-
sitions on the bra. The DSFD can be described as fol-
lows: the vertical left and right lines of the diagram
represent the time evolution (bottom to top) of the
ket and bra, respectively; the applied electric fields
are indicated with arrows oriented toward the left if
propagating with a negative wave vector and toward
the right for a positive wave vector. Each interaction
with the electric field produces a transition between
the two electronic states of either the bra or the ket.
The ability to track the evolution of the bra and ket si-
multaneously makes the density matrix representation
a most appropriate tool for the description of many
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dynamical phenomena in nonlinear optical processes.

D. Singly-Dressed FWM

MWM process can be effectively controlled by the
external laser fields, in which the external fields can
give considerable perturbation to the atomic levels,
namely, the dressing effect, which will be introduced
in the following in detail.

As shown in Fig. 6 (a), in the presence of a strong
dressing field G2 (Rabi frequency of E2, and G2 =
µE2/~), the dressed states |+〉 or |−〉 can be gener-
ated with the separation ∆± = 2|G2|. When scan-
ning the frequency detuning of the dressing field ∆2,
we can obtain EIT for the probe field and a sup-
pressed FWM signal (Fig. 6 (b)), or electromagneti-
cally induced absorption (EIA) for the probe field and
an enhanced FWM (Fig. 6 (c)). For the probe field
propagating through the medium we define the base-
line versus ∆2 to be the probe field intensity with-
out dressing effect. Thus, this baseline is just the
Doppler-broadened absorption signal of the material.
With G2 beam on, we can obtain one EIT peak at
∆1 + ∆2 = 0 where the transmitted intensity is the
largest comparing to the baseline. Since there is no en-
ergy level in the original position of |1〉 and the probe
field is no longer absorbed by the material, the degree
of transmission (or suppression of absorption) of the
probe field is the highest. An EIA dip is obtained at
∆1 +∆2 = |G2|2/∆1, where the transmitted intensity
is the smallest compared to the baseline. The reason
is that the dressed state |+〉 or |−〉 is resonant with
the probe field which is absorbed by the material and
the degree of transmission (or enhancement of absorp-
tion) of the probe field is the lowest. Moreover, since
the transparent degree (or suppression of absorption)
of the probe field G1 is the largest at ∆1 = 0, the EIT
peaks for G2 are the highest. While at certain de-
tuning |∆1|, the induced transparent degree decreases
and the EIT peak reduces. When |∆1| becomes much
larger, the degree of transparency decreases and the
suppression of absorption changes to enhance absorp-
tion.

Such dressing effect can influence the MWM in this
way: when the probe field is resonating with the
dressed state |+〉 or |−〉, i.e., in the case of EIA, the
MWM will be enhanced; when the probe and dress-
ing fileds satisfy the two-photon resonance, the MWM
will be suppressed. Such influence leads to the AT
splitting, suppression and enhancement of MWM.

FIG. 6. (a) Diagram of three-level ladder-type system with
a dressing field E2 (and detuning ∆2). The dressed-state
pictures of the (b) suppression (or EIT) and (c) enhance-
ment (or EIA) of FWM Ef (or probe field Ep with detun-
ing ∆1) for the two-level system, respectively

FIG. 7. (a) Parallel-cascade, (b) sequential-cascade, and
(c) nested-cascade mode doubly-dressed FWMs

E. Doubly-Dressed FWM

Next, we introduce doubly-dressed effect on the
generation process of FWM or probe transmission sig-
nal. It is generally divided into parallel-, nested-,
and sequential-cascade modes. First in the parallel-
type doubly-dressed case, as shown in Fig. 7 (a), the
fields E3 and E4 dress different levels |1〉 and |0〉,
via the subchains ρ10

−ω3−−−→ ρ30
ω3−→ ρ10(ρ(G3±)0) and

ρ20
−ω4−−−→ ρ24

ω4−→ ρ20(ρ2(G4±)), respectively. This
means that the dressing effects of E3 and E4 lay par-
allels. In parallel-cascade case, the profiles (dashed
curves in Fig. 8(a)) are induced by one dressing field,
and the transition between bright and dark states (in
Fig. 8(a)) is caused by the other dressing field. So, the
two dressing fields in parallel-dressed cascade mode
have no interaction. And there is only one symmetric
center at ∆1 = 0.

In Fig. 7 (b), the FWM signal is in sequential-
cascade doubly-dressed mode (dressed by E2 and E3),
in which the fields E2 and E3 dress the same level
|1〉 via the subchain ρ10

ω2−→ ρ20
−ω2−−−→ ρ10

−ω3−−−→
ρ30

ω3−→ ρ10. This means that the dressing effects of E2

(ρ10
ω2−→ ρ20

−ω2−−−→ ρ10) and E3 (ρ10
−ω3−−−→ ρ30

ω3−→ ρ10)
join together sequentially, therefore, we call this type
of dressing mode as sequential-cascade mode. The
profiles of the FWM (i.e., AT-splitting) and probe
transmission (i.e., EIT) (the dashed curves in Fig. 8
(b)) show a double-peak and double-dip structure ver-
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FIG. 8. (a1), (b1) and (c1) Parallel, sequential and nested-
cascade doubly-dressed probe transmission signals, respec-
tively. (a2), (b2) and (c2) the corresponding FWM signals.
The dashed curves in (a), (b) and (c) are the probe trans-
mission ((a1)-(c1)) and the corresponding pure FWM sig-
nals ((a2)-(c2)) without E3 or E5, respectively

sus ∆1 with E2 blocked. The transition between
bright and dark states (in Fig. 8 (b)) is caused by
E2. Both of the two signals in Fig. 8 (b) show three
symmetric centers which reflect the interaction be-
tween two dressing fields. In the comparison between
sequential and parallel-cascade modes, the transition
between the bright and dark states reveals interaction
between the two dressing fields in the former mode,
while no interaction is revealed in the latter mode.

In Fig. 7 (c), the FWM signal is in nested doubly-
dressed mode (inner-dressing field E2 and outer-
dressing field E5), in which E5 dresses the same level
|1〉 after E2 having dressed it. This means the dress-
ing effect of E5 (ρ20

−ω5−−−→ ρ40
ω5−→ ρ20) is nested

in that of E2 (ρ10
ω2−→ ρ20 and ρ20

−ω2−−−→ ρ10). By
scanning the detuning of inner-dressing field E2, the
dashed curves in Fig. 8 (c) show one AT splitting
structure in the pure FWM signal and one EIT win-
dow in probe transmission signal. In such case, there
is only one symmetric center when inner dressing field
is scanned, but three symmetric centers when outer-
dressing field is scanned, which reflects the strong
interaction between two dressing fields. Compare
the nested-cascade modes with the sequential-cascade
dressing modes, the interaction between two dressing
fields in the former case is stronger, which is reflected
as dual-bright-state and dual-dark-state in the evolu-
tion of FWM signal and probe transmission.

III. COHERENT CONTROL OF MWM VIA
EIT

A. Enhanced MWM Process

There are three basic configurations for three-level
atomic systems, i.e. ladder-type, V-type, and Λ-type
systems, as shown in Fig. 9. A strong coupling (pump)
laser beam (with frequency ω2 and Rabi frequency
G2) drives the atomic transition between state |2〉

FIG. 9. Sketches of (a) the three-level ladder-type atomic
system; (b) the three-level Λ-type atomic system; and (c)
the three-level V-type atomic system. ∆1 and G1 (∆2 and
G2) are the frequency detuning and the Rabi frequency of
the probe (the coupling) field, respectively.

and state |3〉, and a weak probe laser (frequency ω1

and Rabi frequency G1) drives the transition between
state |1〉 and |2〉. The strong coupling beam dramati-
cally modifies the probe transmission properties. For
a given coupling beam strength, a transparency win-
dow is created for the probe beam near the two-photon
resonance condition ∆1 + ∆2 = 0 (with a dip in χ

′′
),

where ∆1 and ∆2 are the frequency detunings of the
probe and coupling beams, respectively. A sharp nor-
mal dispersion slope is created at the center of the EIT
window, which can be used to slow down the group ve-
locity of the probe light pulses. Both of the absorption
reduction and dispersion enhancement are important
in increasing the efficiencies of nonlinear optical pro-
cesses. The slowing down of the optical pulses inside
the medium increases the effective interaction length,
and the opened EIT window will allow the generated
signal beam to propagate through the medium with
greatly reduced absorption.

For atoms inside a vapor cell, the Doppler effect
can dramatic affect the atomic coherence and EIT-
related effects. Actually, Doppler-broadening at room
temperature can wipe out most of the coherence ef-
fects unless the coupling laser power is extremely large
(which needs to use pulsed lasers). However, by
using two-photon Doppler-free configurations, first-
order Doppler effect can be eliminated; such EIT
and related effects can be observed with cw diode
lasers near atomic resonance. To achieve the two-
photon Doppler-free configuration, the coupling and
the probe lasers have to counter-propagate through
the atomic vapors for the three-level ladder-type sys-
tem and copropagate through the atomic vapors for
Λ and V-type systems.

B. Coexistence and Interaction between
High-Order Nonlinear Processes

1. Opening FWM and SWM channels via Dual EIT
windows

To understand the approach of simultaneously gen-
erating different nonlinear wave mixing processes, we
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will take the generate of highly efficient coexistence
FWM and SWM as an example. This section is based
on Ref. [10], which will offer more details for the read-
ers. Several features in this work are distinctly differ-
ent from and have advantageous over the previously
reported SWM processes. First, FWM and SWM pro-
cesses can be observed simultaneously in this open-
cycled Y-type system, which is not the case in the
close-cycled N-type system. Such coexistence of FWM
and SWM processes allows us to investigate the in-
terplay between the two interesting nonlinear optical
effects, and to obtain the beat signal between them to
get the χ(5) coefficient. Second, the generated FWM
and SWM signals fall into two separate EIT windows
in this four-level dual-EIT system, so the linear ab-
sorptions for the generated FWM and SWM signals
are both greatly suppressed. By individually control-
ling (or tuning) the EIT windows, the generated FWM
and SWM signals can be clearly separated and dis-
tinguished or pull together (by frequency detuning)
to observe interferences between them. Third, since
the amplitude of the FWM signal can be controlled
(enhanced or suppressed) by the coupling beam (via
dressed states), the relative strengths of the FWM and
SWM can be adjusted easily. So, the SWM signal can
be made to be in the same order as the FWM signal.
Fourth, multi-photon destructive interference effects
for both FWM (three-photon interference) and SWM
(five-photon interference) are clearly observed in the
experiment. Although double- and triple-resonance
EIT spectroscopies have been reported previously by
detecting fluorescence, the current method is a coher-
ent phenomenon. Finally, by designing the propaga-
tion directions of the (pump, coupling and probe) laser
beams, we can achieve Doppler-free configurations for
all the EIT subsystems in this Y-type atomic system.
This makes the FWM and SWM processes very effi-
cient even with relatively weak cw laser beams in an
atomic vapor cell.

The pump and coupling laser beams are aligned spa-
tially in the pattern as shown in Fig. 10 (a), with four
pump and coupling beams (E2, E

′
2, E3, E

′
3) prop-

agating through the atomic medium in the same di-
rection with small angles (∼ 0.3◦) between them in
a square-box pattern (the angles are exaggerated in
the figure). During our experiment, one of the pump
beams (E

′
2) is always blocked so we will only con-

sider the system shown in Fig. 10 (c). The probe
beam (E1) propagates in the opposite direction with
an angle as shown in Fig. 10 (a). Since the angles be-
tween the propagation directions are very small, this
configuration satisfies the two-photon Doppler-free
conditions for the two ladder-type EIT subsystems.
For simplicity, we will only consider the diffracted
FWM and SWM signals relevant to our experimen-

FIG. 10. (a) Spatial beam geometry used in the experi-
ment. (b) Simple Y-type atomic system with dual ladder-
type EIT; (c) and (d) FWM processes with two pump
beams in one upper transition dressed by a strong cou-
pling beam in another upper transition; (e) and (f) SWM
processes with two pump beams in one upper transition
and two photons from the coupling beam from another
upper transition. Ef and Es (dash-dotted lines) are the
generated FWM and SWM signals, respectively. The bold
double heading arrows imply the strong coupling beam

tal measurements. By setting the propagation direc-
tion of the probe beam E1 as indicated in Fig. 10
(a) and blocking E

′
2, the diffracted FWM (Ef) and

SWM (Es) signal beams will be in the same direc-
tion determined by the phase-matching conditions:
kf = k1 + k3 − k

′
3 and ks = k1 + k2 − k2 + k3 − k

′
3,

respectively. The total FWM process can be con-
sidered as a result of the constructive or destructive
interference between the two dressed FWM channels
(ρ(0)

00
ω1−→ ρ

(1)
±0

ω3−→ ρ
(2)
30

−ω3−−−→ ρ
(3)
±0), where |+〉 and |−〉

are the two dressed states for level |1〉 due to E2 cou-
pling. We can write down the two SWM processes
(indicated in Figs. 10 (e) and (f)) as: (II) ρ

(0)
00

ω1−→
ρ
(1)
10

ω2−→ ρ
(2)
20

−ω2−−−→ ρ
(3)
10

ω3−→ ρ
(4)
30

−ω3−−−→ ρ
(5)
10 and (III)

ρ
(0)
00

ω1−→ ρ
(1)
10

ω3−→ ρ
(2)
30

−ω3−−−→ ρ
(3)
10

ω2−→ ρ
(4)
20

−ω2−−−→ ρ
(5)
10 ,

respectively. Of course, if E
′
3 is blocked instead of E

′
2

(Fig. 10 (d)), same results can be obtained just with
the indices 2 and 3 switched.

In general, for arbitrary field strengths of E2, E3,
and E

′
3, one needs to solve eleven coupled density-

matrix equations to obtain ρ
(3)
10 for the FWM process

and ρ
(5)
10 for the SWM process. In order to see the rela-

tion and interplay between the FWM and SWM pro-
cesses, we calculate these nonlinear susceptibilities via
appropriate perturbation chains for simplicity. When
both E2 and E

′
2 are blocked, the simple FWM via

chain (I) gives ρ
(3)
10 = −iGaeikf ·r/(d2

1d3), where Ga =
G1G3(G

′
3)
∗, d1 = Γ10 + i∆1, d3 = Γ30 + i(∆1 + ∆3)

with ∆i = Ωi−ωi and Γij is transverse relaxation rate
between states |i〉 and |j〉. Next, when the coupling
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field E2 is turned on, the above simple FWM process
will be dressed and a perturbative approach for such
interaction can be described by the following coupled
equations:

∂ρ
(1)
10 /∂t = −d1ρ

(1)
10 + iG1eik1·rρ

(0)
00 + iG∗2e

−ik2·rρ20

(9)

and ∂ρ20/∂t = −d2ρ20 + iG2eik2·rρ
(1)
10

∂ρ
(3)
10 /∂t = −d1ρ

(3)
10 + iG∗2e

ik2·rρ20 + iG
′∗
3 e−ik3·rρ30

(10)

and ∂ρ20/∂t = −d2ρ20 + iG2eik2·rρ
(3)
10

where d2 = Γ20 + i(∆1 + ∆2). Equations (9) and (10)
(ρ(0)

00 ≈ 1) can be solved together with chain (I) to
give ρ

′
10 = −2iGaeikf ·rd2/[d1d3(d1d2 + |G2|2)].

Expression ρ
′
10 shows an interesting interplay be-

tween the FWM and SWM processes. With coupling
field E2 on, the energy level |1〉 is dressed to split
into two levels |+〉 and |−〉 with induced coherence
between them. The FWM signals will have quantum
interference via the two intermediate levels |+〉 and
|−〉, which can either enhance or suppress the total
observed FWM signal. When the coupling field E2

is very strong (E2 >> E3(E
′
3) >> E1), there ex-

ists a maximum suppression of the FWM at the ex-
act multiple-EIT of condition ∆1 = −∆2 = −∆3.
Also, one can easily calculate the susceptibility ρ

(5)
10

for SWM from pathways (II) and (III) (as shown in
Figs. 10 (e) and (f)) directly to be ρ

(5)
10 = ρ

(II)
10 +ρ

(III)
10 =

2iGa|G2|2eiks·r/(d3
1d2d3). Since ρ

(3)
10 and ρ

(5)
10 have op-

posite signs, multi-dimensional solitons and light con-
densates can be considered in this system with com-
petitive and giant χ(3) and χ(5).

The two EIT windows are generated by the double-
ladder EIT subsystems in the Y-type four-level sys-
tem with both pump fields (between |1〉 and |3〉) and
coupling field (between |1〉 and |2〉) stronger than the
probe beam (between |0〉 and |1〉), as shown in Fig. 10
(c). Since the generated SWM signal falls into one
ladder-type EIT window (|0〉 − |1〉 − |2〉 branch), the
SWM processes can be very efficient, especially when
the FWM signal is suppressed. For finite frequency
detunings ∆2 and ∆3, the two EIT windows in the
Y-type system will be separated, and the generated
FWM and SWM signals in these two EIT windows
are easily distinguishable. Specifically, it is easy to
see that there exist dual ladder-type EIT windows for
E1, Ef , as well as the SWM signal (Es). There are
one three-photon interference pathway (i.e., interfer-
ence between ω1 +ω3−ω3 and ω1) for the FWM pro-
cess and two five-photon interference pathways (i.e.,

between five-photon ω1+ω2−ω2+ω3−ω3 and ω1, and
between five-photon ω1+ω3−ω3+ω2−ω2 and ω1) for
the SWM processes. In this system, the three-photon
and five-photon interferences are destructive that χ(3)

and χ(5) are zeros at the line centers. Coexisting SWM
and FWM signal efficiencies and amount of suppres-
sion of the FWM signal are most prominent under
the multiple EIT condition of ∆1 = −∆2 = −∆3

and E2 >> E3(E
′
3) >> E1 in Fig. 10 (c) (and

E3 >> E2(E
′
2) >> E1 in Fig. 10 (d)).

The experimental demonstrations of co-existing
FWM and SWM processes, as well as controllable
FWM and SWM processes, were carried out in atomic
vapor of 87Rb. The energy levels of 5s1/2 (F = 2),
5p3/2, 5d3/2, and 5d5/2 form the four-level Y-type sys-
tem as shown in Fig. 10 (b). The laser beams were
carefully aligned as indicated in Fig. 10 (a) (with-
out E

′
2). The vapor cell temperature is set to be

60◦C. The probe laser beam E1 (with a wavelength of
780 nm, from an external cavity diode laser (ECDL),
connecting Ef 5s1/2 − 5p3/2, and vertical polariza-
tion) is horizontally polarized and has a power of
about P1 ≈3.5 mW. The pump laser beams E3 and
E
′
3 (wavelength 775.98 nm, connecting transition Ef

5p3/2−5d5/2, and vertical polarization) are split from
a CW Ti: Sapphire laser with equal power (P3 ≈ P

′
3).

The coupling laser beam E2 (with power P2, wave-
length 776.16 nm, and connecting 5p3/2 − 5d3/2) is
from another ECDL and is vertically polarized. Great
cares were taken in aligning the laser beams with spa-
tial overlaps and wave vector phase-matching condi-
tions with small angles (∼ 0.3◦) between them, as
indicated in Fig. 10 (a). The diameters at the vapor
cell center for the pump and coupling beams are about
0.5 mm, and the diameter of the probe beam (E1) is
about 0.3 mm. The diffracted FWM and SWM signals
(kf and ks satisfying phase matching conditions) with
horizontal polarization are in the direction of Ef & Es

(at the lower right corner of Fig. 10 (a)) and are de-
tected by an avalanche photodiode detector (APD).
The transmitted probe beam is simultaneously de-
tected by a silicon photodiode.

The dual-EIT windows of the Y-type system are
measured by setting ∆2 = −112 MHz and ∆3 = 0,
with three laser beams (E2, E3 and E

′
3) on. These two

modified EIT windows from the two ladder-type EIT
subsystems (at standard ∆1 = −∆2 and ∆1 = −∆3

EIT positions in probe transmission trace detected at
the silicon photodiode) are depicted in Fig. 11 (peaks
4 and 5 of curve (b)). Meanwhile, as ∆1 is scanned,
several generated wave-mixing signals are observed
(curve (a) of Fig. 11). We identify peak 2 as a com-
bination of the FWM signal and a small amount of
SWM signal. Peak 3 is the SWM signal and peak
1 is another FWM signal outside the EIT windows.
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FIG. 11. (a) Measured SWM (peak 3) and FWM (peaks
1 and 2) signals. (b) Probe beam transmission (peaks 4
and 5: two ladder-type EIT windows) versus ∆1. The

experimental parameters are P1 =3.6 mW, P
′
2 =0, P2 =33

mW, P3 = P
′
3 =130 mW, ∆2 = −112 MHz, and ∆3 = 0[10]

FIG. 12. (a) Measured SWM signal spectra for different
coupling field E2 frequencies; (b) Theoretical plot of SWM
intensity versus ∆1 for different ∆2 values. P1 =3.4 mW,

P
′
2 =0, P2 =34 mW, P3 = P

′
3 =96 mW, Γ10/2π =3 MHz,

Γ20 = Γ30 = 2π× 0.5 MHz, and ∆3 = −450 MHz[10]

Since the FWM and SWM signals are diffracted in
the same spatial direction, we identify them by se-
lectively blocking different laser beams and detuning
different laser frequencies. We intentionally set large
frequency detuning to separate the generated FWM
and SWM signals in Fig. 11 for clarity. When the dif-
ference between ∆2 and ∆3 is reduced, the two EIT
windows start to merge and the FWM and SWM sig-
nals begin to interfere. The dip in the middle of the
FWM signal (peak 2 of curve (a) in Fig. 11) is due to
three-photon destructive interference, which is clearly
observed in this coherent signal detection.

Figure 12 presents the changes of the SWM signal
(corresponding to the peak 3 in Fig. 11) as a function
of the coupling field frequency detuning. It is seen
from Fig. 12 (a) that, as ∆2 changes, the generated
SWM signal changes from symmetric to asymmetric,
which is due to two-photon or three-photon resonant
emission enhancement. Such asymmetric SWM spec-
tra have been simulated by numerically solving the
eleven coupled density-matrix equations for the sys-

tem at the steady state and are displayed in Fig. 12
(b). The dips at the line center of the SWM spectra
are due to five-photon (one probe photon plus four
pump and coupling photons) destructive interference
with the generated signal photon, which looks like a
multi-photon EIT phenomenon, but is actually a sup-
pression of generating SWM due to multi-photon de-
structive interference at the exact resonance.

The maximal FWM and SWM efficiencies in this
system are quite high (measured to be about 10% and
1%, respectively). The coexistence of these two non-
linear wave-mixing processes in this system can be
used to evaluate the high-order nonlinear susceptibil-
ity χ(5) by beating the FWM and SWM signals. Since
|ρ(3)

10 | >> |ρ(5)
10 | is generally true, the real and imagi-

nary parts of χ(5) can be measured by homodyne de-
tection with the FWM signal as the strong local oscil-
lator. We have also measured the FWM and SWM sig-
nals when all the four strong laser beams (E2, E

′
2, E3,

E
′
3) are present. This four-level atomic system with

co-existing FWM and SWM is consisted of three con-
ventional two-photon Doppler-free EIT subsystems,
i.e., |0〉−|1〉−|2〉 (ladder-type), |0〉−|1〉−|3〉 (ladder-
type) and |2〉 − |1〉 − |3〉 (V-type). In general, we can
investigate interesting interplays between two funda-
mental nonlinear wave-mixing processes, and identify
ways to enhance the higher-order nonlinear optical
processes through opening new nonlinear channels via
atomic coherence and quantum interference.

2. Temporal and Spatial Interference between FWM and
SWM

In the section III. B. 1, the dual-EIT windows are
used to transmit the generated FWM and SWM sig-
nals, therefore highly efficient FWM and SWM can
be simultaneously generated. If the generated FWM
and SWM are transmitted in the same EIT window,
spatial-temporal coherent interference between FWM
and SWM will occur.

Since the angles between the laser beams in the
square-box pattern are very small (0.3◦), the optical
alignments of the laser beams are quite tedious and
challenging. In the generated FWM and SWM sig-
nal beams, the coherence lengths are given by lF =
2c/[n(ω2/ω1)|ω2 − ω1|θ2] and lS = 2c/[n(ω3/ω1)|ω3 −
ω1|θ2], respectively, with n being the refractive index
at the frequency ω1. In the experiment, θ is very small
(0.3◦) that lF and lS are much larger than the inter-
action length L, so the phase-mismatch effect can be
neglected.

With the current condition (G3, G
′
3)> G2 >>(G

′
2,

G1), and neglecting other MWM processes that are
either very weak or propagate in other directions, the
total detected intensity at angle θ is given by the co-
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FIG. 13. (a) A three-dimensional spatial-temporal inter-
ferogram of the FWM and SWM signal intensity I(τ, r)
versus time-delay τ and transverse position r. (b) The
theoretically simulated result from Eq. (11). The signal in-
tensity is normalized to 1. The parameters are Ω2 =2.427
fs−1, ∆k=1. 9 mm−1, and η =1.5

existing FWM (EF) and SWM (ES) signal as

I(τ, r) ∝ |χ(3)|2+|ηχ(5)|2+2η|χ(3)||χ(5)| cos(ϕ3−ϕ5+ϕ)
(11)

where η = ε2ε3ε
′
3/ε

′
2, χ(3) =

−iµ2
1µ

2
2N/{ε0~3d1d2[d1 + (G3 + G

′
3)

2/d3]} =
|χ(3)|exp(iϕ3), χ(5) = 2iµ2

1µ
2
2µ

2
3N/(ε0~5d3

1d2d3) =
|χ(5)|exp(ıϕ5), d3 = Γ30 + i(∆1 − ∆3) with ϕ =
∆k ·r−ω2τ and ∆k = kF−kS = (k2−k

′
2)−(k3−k

′
3).

µ1, µ2 and µ3 are the dipole moments of the tran-
sitions |0〉 − |1〉, |1〉 − |2〉 and |3〉 − |1〉, respectively,
and ε2, ε

′
2, ε3, ε

′
3 are the respective amplitudes of the

fields.
From Eq. (11), it is clear to see that the total sig-

nal has not only spatial interference with a period of
2π/∆k, but also an ultrafast time oscillation with a
period of 2π/ω2, which form a spatial temporal in-
terferogram. With a plane-wave approximation and
the square-box configuration for the laser beams with
small angles, the spatial interference occurs in the
plane perpendicular to the propagation direction.

Figure 13 depicts a typical three-dimensional inter-
ferogram pattern (Fig. 13 (a)). Figure 13 (b) presents
a theoretical simulation for the total intensity with ap-
propriate parameters. The temporal oscillation period
is 2π/ω2=2.588 fs, which corresponds to the transition
from 5P3/2 to 5D5/2 with a frequency of Ω2=2.427
fs−1 in 85Rb. Such measurement of atomic transition
frequency in optical wavelength range is Doppler-free
and can be used as a tool for precision frequency mea-
surement. If this technique is used on a transition with
larger energy difference, sub-femtosecond time resolu-
tion can be achieved by scanning translation stage in
nanometer precision. The spatial interference is de-
termined by the value of ∆k ≈ 2π|λ2 − λ3|θ/λ2λ3. In
our experimental situation, we have 2π/∆k=3.3 mm
along the direction of ∆k, which gives a little more
than one interference fringe. When the phase delay
is varied with E

′
2 beam, the spatial interference pat-

tern can be changed from destructive to constructive
at the center of the beam profile (r = 0).

To see how well the transition frequency Ω2 can
be determined from such time interference fringe, we
need to consider two cases. When the laser linewidths
are much narrower than the homogeneous linewidths
of the transitions, the phase fluctuations of the laser
fields will limit the range of the time delay, which
puts an upper boundry on the accuracy of the modu-
lation frequency measurement. In such case, the accu-
racy of measuring modulation frequency is determined
by the laser linewidths. This measurement depends
on how well ω2 can be tuned to the transition fre-
quency Ω2, and is Doppler-free, which can be useful
in optical spectroscopy and precision measurements.
For the other case, when the laser bandwidths are
larger than the atomic decay rates, the modulation
frequency corresponds directly to the resonant fre-
quency Ω2. The accuracy in the modulation frequency
measurement will then be determined by the homoge-
neous linewidths of the atomic transitions, even in the
Doppler broadened atomic medium, which is applica-
ble to transitions between metastable states.

A few points are worth mentioning here. First, our
experimental results indicate that we can not only
enhanced SWM to be in the same order of inten-
sity as the co-existing FWM signal, but also manip-
ulate their spatial and temporal behaviors by con-
trolling the phase delay in one of the laser beams.
Such spatial-temporal interferogram between FWM
and SWM signals was generated with three indepen-
dent laser sources. Second, by adjusting the power
of E

′
2 beam, the relative strengths of the FWM and

SWM signals can be easily adjusted. In the case of
making ES << EF (letting E

′
2 → E2 in power),

Eq. (11) can serve as a heterodyne detection method
to determine the ratio of high-order nonlinear suscep-
tibilities (χ(5)/χ(3)). Since χ(3) can be easily mea-
sured, the χ(5) coefficient in such atomic medium
can then be determined. Third, the technique used
here can be easily transferred to solid materials, on
which EIT and FWM processes can be easily obtained.
Fourth, with controlled FWM and SWM processes
and enhanced efficiency via atomic coherence and the
opened EIT window, three-photon entanglement or
correlated triplet photons can be generated for testing
fundamental quantum mechanics and quantum infor-
mation processing.

3. Efficient Energy Transfer between FWM and SWM

The interaction between FWM and SWM is not
only reflected by the spatial-temporal coherent inter-
ference, but also the energy transfer between them as
well. As well know, by manipulating the atomic co-
herence and quantum interference between different
energy levels in the multi-level atomic system with
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carefully-designed phase-matching conditions and in-
tensities, as well as setting the optical depth of the
atomic medium at certain value, we can generate and
control co-existing FWM and SWM processes, and
their relative strengths. Spatial-temporal coherent in-
terference between FWM and SWM was discussed
in the section III. B. 2, and energy transfer between
the FWM and SWM signals during their propagation
occurred. In this section, we study how the FWM
and SWM signal fields reach their steady-state val-
ues during propagation and the coupled equations for
the probe, FWM, and SWM fields are used to ex-
plain the measured results. Studying such energy ex-
change during propagation between high-order nonlin-
ear wave-mixing processes can help us to understand
and control these higher-order nonlinear optical pro-

cesses, and hopefully lead to interesting applications
in opto-electronic devices, 2D soliton formation, gen-
erations of entangled photons, and quantum informa-
tion processing.

In the generated FWM and SWM signal beams, the
coherence lengths are given by lfc = 2c/[n(ω2/ω1)|ω2−
ω1|θ2] and lsc = 2c/{n[(ω2 + ω3)/ω1]|ω2 + ω3−ω1|θ2},
respectively, with n being the refractive index at the
frequency ω1. In our experiment, θ is very small
(about 0.3◦) that lfc and lsc are much larger than the
interaction length L, so the phase-mismatch can be
neglected.

Under the conditions (G3, G
′
3) > (G2, G

′
2) >> Gp,

a set of coupled equations for the probe field and the
generated dominant FWM & SWM fields can be used
to describe the dynamics of the system as

∂Gp/∂z = iξpρp
10 = −D1

Dl
Gp +

D2

Df
Gfexp(−i∆kf · r)− D3

Ds
Gsexp(−iks · r) (12-1)

∂Gf/∂z = iξfρ
f
10 = −D4

Dl
Gf +

D5

Df
Gpexp(i∆kf · r) +

D6

Df
Gsexp(i∆ks · r) (12-2)

∂Gs/∂z = iξsρ
s
10 = −D7

Dl
Gs − D8

Ds
Gpexp(i∆kf · r)− D8

Ds
Gfexp(i∆ks · r) (12-3)

where ξp(f,s) ≡ 2kp(f,s)µ
2N/~, ∆kf = k1 − kf , ∆ks =

k1 − ks. When the laser beams are on resonances,
D1 = ξpΓ20Γ30, D2 = ξpΓ30G

2
2, D3 = ξpG2

2G
2
3, D4 =

kfD1/kp, D5 = kfD2/kp, D6 = kfG
2
3D2/(G2

2kp),
D7 = ksD1/kp, D8 = ksG

2
3D2/(Γ30kp), Dl =

Γ10Γ20Γ30 + Γ30G
2
2 + Γ20G

2
3, Df = Γ10Γ20(Γ10Γ30 +

G2
3), and Ds = Γ3

10Γ20Γ30. N , and µ are the atomic
density, decoherence rates, and the dipole moment of
the relevant transition, respectively.

Equations (12-1)∼(12-3) are derived from the op-
tical responses of the medium to the probe, the gen-
erated FWM and SWM fields, respectively. The first
terms in these equations contain the linear suscepti-
bilities with the EIT signature, and the second and
third terms in each equation are contributions from
the third- and fifth-order nonlinear susceptibilities, re-
spectively, which are the parametric conversion pro-
cesses. More explicitly, the linear susceptibilities con-
trol the dispersion profiles and transmission spectra of
the probe and the generated FWM and SWM fields,
while the third- and fifth-order nonlinearities play the
essential roles in determining the features of energy
transfer between FWM and SWM processes.

These coupled equations indicate that not only the
probe beam can generate FWM and SWM fields, but
also these FWM and SWM fields can affect each other.

Competitions between these fields are the key to es-
tablish the equilibrium among them. The solutions
of these coupled equations determine the propagation
characteristics of the generated Ef and Es fields. To
see the physical picture more clearly without giving
the complicated solutions, we rewrite Eqs. (12-2) and
(12-3) as

∂(Gf + Gs)
∂z

=− D4

Dl
(Gf + Gs) + (

D5

Df
− D8

Ds
)Gp

(13)

+ (
D6

Df
Gs − D8

Ds
Gf)

By examining the solutions at large propagation
distance (which give D1 ≈ D4 ≈ D7, D1 ≈ D4 ≈ D7

and D3 ≈ D8), we notice that some balance conditions
are satisfied, i.e., D2Df/Df−D3Ds/Ds = 0 in Eq. (12-
1) for the probe beam, and D6Ds/Df −D8Df/Ds = 0
in Eq. (13) for the FWM + SWM signals. Quantum
destructive interferences between three-photon (Gf)
and five-photon (Gs) excitation pathways are the un-
derlying mechanisms for the probe and the generated
FWM + SWM signals to reach equilibrium.

For given initial conditions of Gp(z = 0) = Q0,
Gf(z = 0) = Gs(z = 0) = 0 at the entrance face
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FIG. 14. Square points: Measured FWM and SWM
peak intensities versus atom number density (FWM curve,
SWM curve, and FWM+SWM curve). Inset: The mea-
sured probe intensity at the EIT window. Solid lines: The-
oretically calculated curves corresponding to the measured
results (square points). The parameters are G1 = 2π × 5

MHz, G2 = G
′
2 = 2π × 35 MHz, G3 = G

′
3 = 2π × 80

MHz, ∆3 = 0 −∆1 = ∆2 = 312 MHz, Γ10/2π = 3 MHz,
Γ20/2π = 0.4 MHz, and Γ30/2π = 2 MHz

of the medium, Eqs. (12-1) and (12-2) can be solved
analytically to be

Gf+Gs =
Q0D1

D1 −D4
(
D8

Ds
−D5

Df
)[1−exp(1−D4z

Dl
)] (14)

where D4z/Dl ∝ Nz. From Eq. (14), it is
clear to see that for sufficiently large Nz with
4 exp(−D4z/Dl) << 1, the solution reaches a con-
stant value independent on z. These balancing condi-
tions indicate that after an initial propagation dis-
tance for the FWM and SWM signals to build up
(while the probe intensity decreases accordingly), the
probe beam and the total generated FWM + SWM
beams reach their equilibrium. After that the FWM
and SWM fields will only transfer energies between
themselves and, eventually, after a much longer prop-
agation distance, reach their individual steady states,
so they will propagate in the medium without further
absorption and distortion.

Figure 14 (square points) shows the intensities of
the probe, FWM, and SWM signals as a function of
atomic density, respectively. The FWM and SWM
signals increase initially at low atomic density (or
equivalently short propagation distance), as the probe
beam intensity decreases. At certain atomic den-
sity (about N = 0.3 × 1012/cm3), the probe and the
FWM + SWM intensities reach their equilibriums, af-
ter which energy exchange occurs only between the
FWM and SWM signals as they propagate through
the medium. Eventually, at a higher atomic density

(about N = 1.2 × 1012/cm3), the FWM and SWM
signals reach their respective steady-state values in-
dividually. This is the first observation of energy ex-
change between the generated FWM and SWM sig-
nals in propagation and the process of reaching their
steady-state values. The theoretically simulated re-
sults from Eq. (12) are plotted in Fig. 14 (solid lines),
which match quite well with the measured data.

Such energy exchange during propagation can be
influenced by many parameters. For example, the in-
tensities of E3 and E

′
3 can greatly modify the bal-

ance between the FWM and SWM generating pro-
cesses. By fixing the atomic cell temperature to have
N = 1.4× 1012/cm3 (dashed line in Fig. 14), the rela-
tive FWM and SWM intensities can be tuned by vary-
ing the power of E3 (E

′
3).

There are a few important issues that are worth
raising here. First, if a pulsed laser is used for the
probe beam, the generated FWM and SWM signals
will be slowed down due to sharp dispersion, and even-
tually become pulse-matched with the probe pulses, as
in the case of FWM. Such system could possibly used
to generate entangled FWM (or SWM) photon pairs
and even triplet photons for quantum information pro-
cessing. Second, both FWM and SWM processes de-
scribed here share the same Ep, E2 and E

′
2 beams, so

strong competitions between these wave-mixing pro-
cesses, as well as the three-photon and five-photon
interferences, exist in this system. The energy ex-
change and interactions between the generated FWM
and SWM during propagation are the manifestation
of strong coupling and competitions between these
high-order nonlinear optical processes. Third, in order
to investigate the FWM and SWM energy exchange,
we selectively suppressed the typically efficient SWM
channels in the km direction (by using lower E2 & E

′
2

powers and slightly misaligning the E3 & E
′
3 beams),

so only dominant FWM process needs to be consid-
ered in this direction.

In summary, FWM and SWM processes were shown
to co-exist in the inverted-Y atomic system. The ef-
ficient coupling between these high-order nonlinear
wave-mixing processes makes them exchange energy
in propagation before reaching their respective equi-
librium values at long propagation distance (or high
optical density) through the medium. Quantum de-
structive interferences between three-photon and five–
photon excitation pathways for FWM and SWM, re-
spectively, as well as reabsorption via nonlinear pro-
cesses, are the underlying mechanism for the gener-
ated FWM and SWM fields to reach equilibrium. By
choosing appropriate propagation length (or atomic
cell temperature) or pump power E3 and E

′
3, one can

get desired relative strengths between the FWM and
SWM signals from IFWM < ISWM to IFWM > ISWM.
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A theoretical model has been developed to compare
with the experimentally measured FWM and SWM
generation processes during propagation with excel-
lent agreements. Understanding and controlling the
high-order nonlinear optical processes, such as χ(3)

and χ(5), can be very important in studying new phys-
ical phenomena (such as 2D soliton formation and
liquid light condensate) and in designing new appli-
cations for quantum information processing (such as
entangled photon generations and 3-qubit quantum
computation).

C. AT Splitting and Enhancement/ Suppression

1. AT Splitting in High-Order Nonlinear Processes

Atomic AT splitting (ac-Stark splitting) was first
observed on a radio-frequency transition, and then
in Calcium atoms. Such AT splitting effect was
also investigated in lithium molecule using cw triple-
resonant spectroscopy and in semiconductor material
with ultrashort intense laser pulses. Recently, an an-
tiblockade effect due to the AT-split Rydberg popula-
tion was studied theoretically and experimentally with
two-photon excitation in a three-level atomic system.
In this section, firstly, the primary and secondary AT
splitting of the dressed FWM process in an EIT win-
dow of a four-level Y-type atomic vapor system. The-
oretical calculations are carried out to well explain the
observed results, giving a full physical understanding
of the interesting multiple AT splitting in the high-
order nonlinear optical processes. Then, we go further
to investigate the complex AT splitting phenomena in
the SWM process. Although primary AT splitting in
molecular lithium has been reported previously by de-
tecting fluorescence, the current method is a coherent
phenomenon in high order nonlinear processes, mak-
ing use of the unique spatial phase-matching condi-
tions and laser induced atomic coherence in the multi-
level atomic system, so it can be used to control the
direction of optical signals.

The two ladder-type EIT subsystems form two EIT
windows. The two EIT windows can either overlap or
be separated by changing the frequency detuning of
the pump and coupling laser beams. First, without
the strong coupling field E3, a simple FWM process
(with E1, E2 and E

′
2) will generate a signal field EF

with frequency ω1. The density-matrix element ρ
(3)
10

of the FWM signal could be got via the perturbation
chain (I) ρ

(0)
00

ω1−→ ρ
(1)
10

ω2−→ ρ
(2)
20

−ω2−−−→ ρ
(3)
10 . When the

powers of E2 and E
′
2 are strong enough, they will start

to dress the energy level |1〉 to create the primarily-
dressed states |+〉 and |−〉, as shown in Fig. 15 (c),
which can be described via the perturbation chain (II)

FIG. 15. (a) Four-level Y-type atomic system. (b) Spatial
phase-matching beam geometry used in the experiment.
(c)∼(e) Corresponding dressed-state pictures of (a)

ρ
(0)
00

ω1−→ ρ
(1)
±0

ω2−→ ρ
(2)
20

−ω2−−−→ ρ
(3)
±0. Similarly, a stronger

probe field E1 can also modify such FWM process.
Such self-dressing effect, i.e. the participating FWM
fields dress the involved energy level which then affects
the FWM process itself, is unique for such MWM pro-
cesses in multi-level systems and has not been system-
atically studied before. Next, when the coupling field
E3 is added, these fields (E2 (E

′
2) and E3) can dress

the energy level |1〉 together. E2 (E
′
2) first creates the

primary dressed states |±〉, then E3 creates the sec-
ondary dressed states |±±〉 at a proper frequency de-
tuning (tuned to near either the upper or lower dressed
state |+〉 or |−〉), as shown in Figs. 15 (d) and (e),
via the perturbation chain (III) ρ

(0)
00

ω1−→ ρ
(1)
±±0

ω2−→
ρ
(2)
20

−ω2−−−→ ρ
(3)
±±0, which generates the secondary AT

splitting for the FWM signal. The two primary
dressed states induced by E2 and E

′
2 can be writ-

ten as |±〉 = sin θ1|1〉 + cos θ1|2〉 (Fig. 15 (c)). When
E3 only couples the dressed state |+〉, the secondary
dressed states are given by |+±〉 = sin θ2|+〉+cos θ2|3〉
(Fig. 15 (d)), where sin θ1 = −a1/a2, cos θ1 = Gb

2/a2,
sin θ2 = −a3/a4, cos θ2 = G3/a4, a1 = ∆2 − λ±,
a2 =

√
a2
1 + |Gb

2|2, a3 = ∆3 − λ+ − λ+±, a4 =√
a2
3 + |G3|2, and Gb

2 = G2 + G
′
2. The eigenval-

ues are λ± = (∆2 ±
√

∆2
2 + 4|G2|2)/2 for |±〉, and

λ+± = (∆
′
3 ±

√
∆′

3 + 4|G3|2)/2 for | + ±〉, where
∆
′
3 = ∆3 − λ+.

In order to see the AT splitting of the FWM signal
in the EIT window, we first calculate these nonlinear
susceptibilities via appropriate perturbation chains
here for simplicity. When the coupling beam E3 is
blocked, the simple FWM (with E1, E2 and E

′
2)
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process via chain (I) gives ρ
(3)
10 = Ga/(d2

1d2), where
Ga = −iG1G2(G

′
2)
∗exp(ikF · r). When E3 is turned

on, the above simple FWM process will be dressed by

fields E2 , E
′
2, E3 and even E1 (if it is not too weak),

and the multi-dressed FWM process is

ρ
(3)
10 = Ga/[(d2 + |G1|2/d4)(d1 + |Gb

2|2/d2 + |G3|2/d3)(d1 + |G1|2/Γ0 + |G3|2/d3)] (15)

FIG. 16. Measured multi-peak FWM signals (lower
curves) and the corresponding EIT (upper curves) induced

by the fields E2 + E
′
2 and E3 versus ∆1 for ∆2 = 0,

∆3 = 125 (a), ∆3 = 20 (b), ∆3 = −20 MHz (c), and
versus ∆2 for ∆1 = −20, ∆3 = 125 (d), ∆3 = 20 (e),
∆3 = −20 MHz (f). The other parameters are P1 = 1.3

mW, P2 = P
′
2 = 16 mW and P3 = 146 mW[68]

with d4 = Γ21 + i∆2. Since the probe field is weak
(G1 << Gb

2), the primary AT separation ∆a is de-
termined mainly by the fields E2 and E

′
2 (i.e., ∆a =

λ+ − λ− ≈ 2Gb
2 as shown in Fig. 16 (a)). The sec-

ondary AT separation ∆c is caused by the dressing
field E3 (i.e., ∆c = λ++ − λ+− = λ−+ − λ−− ≈ 2G3

as shown in Figs. 16 (b) and (c)). From the expan-
sions ρ

(3)
10 ≈ Ga[1 − |Gb

2|2/(d1d2)]/(d2
1d2) and ρ

(3)
10 ≈

Ga[1−|G3|2/(d1d2)]2/(d2
1d2), one can see that the first

and second terms stand for three-photon and five-
photon processes, respectively, which show that the
AT splitting results from the destructive interference
between the three-photon and five-photon processes.

Figures 16(a)∼(c) present the FWM signal inten-
sity versus the probe field detuning ∆1 for different
dressing field detuning ∆3 = λ± ≈ Gb

2. The upper-
curve in each figure is the probe transmission with two
ladder-type EIT windows, and the lower-curve is the
FWM signal. In Fig. 16 (a), the right (|0〉 − |1〉 − |2〉
satisfying ∆1 + ∆2 = 0) EIT window is induced by
the pump fields E2 + E

′
2 and the left (|0〉 − |1〉 − |3〉

satisfying ∆1 + ∆3 = 0) one is induced by the cou-
pling field E3. The right EIT window contains the
double-peak FWM signal EF, with the two peaks cre-
ated by E2 + E

′
2(i.e., the primary AT splitting). The

left and right peaks of the FWM signal correspond to

the dressed states |+〉 and |−〉, respectively (Fig. 15
(c)). Since the left EIT window is quite far from the
right EIT window, the coupling field E3 basically can-
not affect the two peaks in the FWM signal (Fig. 16
(a)).

However, when the frequency of E3 is tuned to move
the left EIT window into the left FWM peak, sec-
ondary AT splitting occurs and the left FWM signal
peak splits into two peaks (Fig. 16 (b)). Moreover,
the right FWM peak is enhanced simultaneously, since
the coupling field E3 dresses the state |+〉 and sepa-
rates it into two secondary dressed states | + +〉 and
| + −〉 (satisfying ∆3 = λ+). The three peaks in
the triple-peak FWM signal (Fig. 16 (b)), from left
to right, correspond to the secondary dressed states
|+ +〉 and |+−〉, and the primary dressed state |−〉,
respectively (Fig. 15 (d)). Similarly, the right FWM
peak is separated into two peaks while the left FWM
peak is enhanced when the coupling beam is tuned
to the |−〉 state, as shown in Fig. 16 (c). The three
peaks, from left to right, correspond to the primary
dressed state |+〉 and the secondary dressed states
| − +〉 and | − −〉 (satisfying ∆3 = λ−), respectively
(Fig. 15 (e)). Figure 16 (d) shows the AT splitting of
the FWM signal versus the pump field detuning ∆2,
when the |0〉− |1〉− |3〉 EIT window is tuned quite far
from the |0〉 − |1〉 − |2〉 EIT window. In this case the
primary AT splitting is mainly caused by E2 + E

′
2.

When the two EIT windows get close and overlap,
Figs. 16 (e) and (f) depict the suppressed and en-
hanced FWM signal intensities versus ∆2 for different
coupling field detuning ∆3, respectively. Compared
with Fig. 16 (d), the FWM signals are suppressed
(Fig. 16 (e)) and enhanced (Fig. 16 (f)) at ∆1+∆3 = 0
and ∆1 + ∆3 = |G3|2/∆1, respectively. Such FWM
signal is enhanced via a single-photon resonance.

With the coupling field E3 blocked and the probe
field E1 weak in Fig. 17 (a), the AT splitting sepa-
rations ∆a and ∆b mainly result from the fields E2

and E
′
2 (i.e. ∆a, ∆b ≈ 2Gb

2 ). Such AT splitting
separations ∆a (Fig. 17 (b)) get larger with increas-
ing E2 and E

′
2. However, when the probe field E1

is strong enough (in Fig. 17 (c)), the AT splitting
separations ∆a and ∆b are then determined by both
the pump fields (E2, E

′
2) and the probe field E1. As
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FIG. 17. Measured double-peak FWM signals versus ∆1

with ∆2 = 0 for (a) increasing P2=1.6, 4, 8.3, 14, 20,
25, 29 and 32 mW from bottom to top and (b) the power
dependence of ∆awhen P1=1.3 mW, and for (c) increasing
P1=0.24, 0.48, 0.58, 0.68, 0.83, 0.93, 1.1, 3.4 and 8 mW
from bottom to top and (d) the power dependence of ∆a

when P2=17 mW[68]

∆a and ∆b get larger with increasing E1, there ex-
ists a turning point at P1 =10 mW (Fig. 17 (d)),
beyond which both AT splitting separations reach
their respective saturation values at high probe power
(Fig. 17 (d)). Figures 17 (e)∼(h) presents the FWM
signal intensity versus the probe field detuning ∆1

for different frequency detuning ∆3 and coupling field
power P3. Since the probe E1 is weak, the primary
AT splitting ∆a mainly results from E2 and E

′
2 (i.e.

∆a = λ+ − λ− ≈ 2Gb
3). The secondary AT split-

ting ∆c (i.e., ∆c = λ++ − λ+− ≈ 2G3 in Fig. 17 (e),
∆c = λ−+ − λ−− ≈ 2G3 in Fig. 17 (g)) gets larger
with increasing E3 (Figs. 17 (f) and (h)).

More interestingly, Eq. (15) for the dressed FWM
with G3 = 0 can be written as

ρ
(3)
10 ≈ G

′
a[1−|G1|2(1/d2d4+1/d1Γ0)+|G1|4/(Γ0d1d2d4)]

(16)
where G

′
a = Ga/{[1 + |Gb

2|2/(d1d2)]d2
1d2}. The first

term of Eq. (16) represents a three-photon process in
the probe and pump fields, the second term is the five-
photon process which interferes destructively with the
first term and is responsible for the AT splitting in
Figs. 17 (d) and (h)) and the third term gives the
seven-photon process, which has the same sign as the
first term and hence tends to increase the FWM sig-
nal. In fact, the second term is dominant at lower
probe power, while the third term is dominant at
higher probe power. Physically, such saturation be-
havior in Figs. 17 (d) and (h) is induced by the bal-
anced interactions between the destructive and con-
structive interferences of these multi-photon transi-
tion pathways.

Next, we briefly investigate the self- and externally-
dressed AT splitting of the SWM processes within

FIG. 18. (a1), (b1) and (c1) are the measured SWM1 self-
dressing AT splitting signals versus ∆1 for ∆2 = −50 MHz
under different P1, P2 and P3 powers, respectively. (a1) is
increasing P1= 0.30, 0.36, 0.43, 0.90, 1.37, 1.85, 2.32, 3.66,
5.33, 8.18, 10.3, 13.61, 15.46, 22.5, 24.2, 25.3, 28.8 and
29.5 mW from bottom to top. (b1) is increasing P2 =0.3,
0.6, 0.9, 1.2, 1.5, 2.1, 4.5, 7.5, 12.5, 17.2, 25.5 and 31.4
mW from bottom to top. (c1) is increasing P3= 1.8, 3.9,
6.3, 7.7, 11.4, 16.7, 22.2, 33.1 and 52.2 mW from bottom
to top. (a2), (b2) and (c2) are the corresponding power
dependences of (a1), (b1) and (c1), respectively. Here ∆a,
∆b and ∆c are the increments of distance between the two
A-T splitting peaks when P1, P2 and P3 are increased,
respectively, and the squares are the experimental results,
while the solid lines in (a2, b2, c2) are the theoretical
calculations. The fixed powers in (a1,2), (b1,2) and (c1,2)
are (P2= 32.0 mW & P3 =55.0 mW), (P1= 13.0 mW &
P3 =55.0 mW), and (P1= 13.0 mW & P2= 32.0 mW),

respectively[69]

EIT windows in an atomic system. Such AT splitting
demonstrates the interactions between two coexisting
SWM processes.

For the SWM1 signal (due to the weak probe field),
the expression can be simplified as: ρ

(5)
S1 = iGS1/[(d1+

G2
2/d2)d2(d1 + G2

2/d2 + G2
3/d3)d3(d1 + G2

3/d3)]. Sim-
ilarly, for the SWM2 signal, the expression is simpli-
fied as: ρ

(5)
S2 = iGS2/[(d1 + G2

4/d4)d4(d1 + G2
3/d3 +

G2
4/d4)d3(d1 + G2

3/d3)], where GS2 = G1G
′∗
3 G3G4G

∗
4.

There exist two ladder-type EIT windows, i.e., the
|0〉 − |1〉 − |2〉 EIT1 window satisfying ∆1 + ∆2 = 0
(induced by the coupling field E2) and the |0〉−|1〉−|4〉
EIT2 window satisfying ∆1 + ∆4 = 0 (induced by the
coupling field E4). The EIT1 and EIT2 windows con-
tain the SWM1 signal (ES1) and the SWM2 signal
(ES2), respectively.

When the external-dressing field E4 is blocked,
we get the SWM1 signal within the EIT1 window
(which is an inverted-Y system). Figure 18 (a1, b1,
c1) presents the SWM1 signal intensity versus the
probe field detuning ∆1 for different field powers of
P1, P2 and P3 with the same frequency detuning
of ∆2 = −50 MHz. Obviously, the SWM1 signal
shows two peaks due to multi-dressing effects. With
the power increases, the intensity of the SWM1 sig-
nals increases accordingly, while the left peak height
is always greater than the height of the right peak.
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Meanwhile, the increments of the AT splitting sep-
arations ∆i = λ

(1)
+ − λ

(1)
− ≈ 2

√|Gj |2 + |Gi0|2 (i =
a, b, c corresponds to j = 1, 2, 3, respectively, and
|Ga0|2 = |G2

20| + |G30|2, |Gb0|2 = |G10|2 + |G30|2,
|Gc0|2 = |G10|2 + |G20|2), increase obviously with in-
creased powers (Rabi frequencies) P1 (G1), P2 (G2)
and P3 (G3), respectively and fixed P2 & P3 (G20 &
G30), P1 & P3 (G10 & G30) and P1 & P2 (G10 & G20),
respectively. The two peaks of the double-peak SWM1
signal (Figs. 18 (a1), (b1) and (c1)) correspond, from
left to right, to the primarily-dressed states |+〉 and
|−〉, respectively. Moreover, the experimentally mea-
sured (peak separation) results in Figs. 18 (a1), (b1)
and (c1) are in good agreement with our theoretical
calculations (solid curves), as shown in Figs. 18 (a2),
(b2) and (c2), respectively.

In summary, we have experimentally observed the
AT splitting of high-order nonlinear optical processes
in an EIT window in atomic vapor system. The AT
splitting can be considered to be due to destructive in-
terference between the three-photon and five-photon
processes. Such controlled multi-channel splitting sig-
nals in nonlinear optical processes can find potential
applications in optical communication and quantum
information processing.

2. Enhancement and Suppression of FWM Processes

In the AT splitting, the spectrum of FWM is a com-
bined result of enhancement and suppression due to
the dressing effect, and the classical Lorentzian emis-
sion line-shape due to the scanning probe detuning.
If the detuning of coupling filed is scanned, instead
of the probe detuning, the enhancement and suppres-
sion due to the dressing effect can be extracted out
from the background. Recently, destructive and con-
structive interferences in a two-level atomic system
and competition via atomic coherence in a four-level
atomic system with two co-existing FWM processes
were studied. In the presence of additional coupling
laser fields, more FWM processes can be generated
to coexist, which can be selectively suppressed or en-
hanced via quantum interference. Also, AT splitting
in triple-resonance spectroscopy was discussed in sec-
tion III. C. 1 previously. In this section, we will fo-
cus on our experimental studies of enhancement and
suppression between two FWM processes. The exper-
imental data clearly show the evolutions of the en-
hancement and suppression, from pure enhancement
to partial enhancement/suppression, and then to pure
suppression at resonance, which are in good agree-
ment with theoretically calculated results. There also
exist interesting interplays between these two FWM
processes due to induced atomic coherence in this sys-
tem.

FIG. 19. The evolution of the dressed effects for different
∆1 values: (a) ∆1 = −101 GHz (squares), −84.3 GHz (cir-
cles), −67 GHz (triangles), 71.3 GHz (reverse triangles),
88.6 GHz (pentagons), 105 GHz (hexagons) from right to
left. Inset: theoretical plots corresponding to the experi-
mental parameters. (b) ∆1 = − 30.3GHz (Squares), −21.6
GHz (triangles) and −13 GHz (circles). (c) ∆1 =29.3 GHz
(Squares), 38 GHz (triangles) and 42.2 GHz (circles)

We first set ∆1 at one point and scan ∆2. Evolu-
tion from suppression to enhancement is observed as
shown in Fig. 19. The probe field is changed from
high to low frequency side. As frequency detuning
goes from ∆1 < 0 to zero, the DFWM signal Ef1 is
enhanced gradually to the maximum value [right side
of Fig. 19 (a)], which is an enhanced process. Then, it
undergoes a partial enhancement/suppression [Fig. 19
(b)], until the FWM signal is purely suppressed at
the resonant point. When ∆1 changes to be positive,
it shows a symmetric process [i.e., a partial suppres-
sion/enhancement in Fig. 19 (c), and a pure enhanced
process in the left side of Fig. 19 (a)].

One way to explain these observed effects is by us-
ing the dressed-state picture. Let us first consider
the case of large G2 (e.g., 15.7 GHz). The dress-
ing field couples the transition |2〉 to |1〉 and creates
the dressed states |G2±〉. Therefore, the DFWM sig-
nal Ef1 for a large one-photon detuning is extremely
small when G2 = 0, the strong dressing field can
cause resonant excitation for one of the dressed states
if the condition ω1 + ω2 = ω10 + (ω21 ± ∆G2) (i.e.,
∆1 + ∆2 ± ∆G2 = 0) is satisfied[14], where ∆G2 is
the splitting level relative to the original position of
the state |1〉 by the dressing field E2 or E

′
2 so that

∆2 = (G2
2 − ∆2

1)/∆1. For example, the DFWM sig-
nal Ef1 is strongly enhanced in the presence of dress-
ing field when ∆1 = −67 GHz [Fig. 19 (a)], which
is mainly due to the one-photon (|0〉 → |G2+〉) res-
onance. Thus, ∆1 for Ef1 is very large initially, so
the dressed effect only gives the enhancement. As
∆1 goes towards zero, the suppression effect gets into
play gradually due to the dressed states |G2±〉. In
this case, when the frequency changes from high to
low values it results in suppression for the DFWM
signal first and then an enhancement. From the data,
we can deduce the condition for the suppressed-dip
to be ω1 + ω2 ≡ ω10 + ω21, (i.e. ∆1 + ∆2 = 0). At
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the ∆1 = 0 point (resonant case), only suppression
effect exists. For the ∆1 > 0 part, it has a symmetric
evolution between the enhancement and suppression
effects, as shown in Fig. 19 (c).

In summary, we report our experimental results
with theoretical analysis on the evolutions of the
dressed effects of the DFWM and NDFWM processes.
The experimental data show that the FWM signal can
be enhanced by adding new coupling fields. In ad-
dition, we have measured the power dependences of
enhanced and suppressed FWM signals. The experi-
mental data are in good agreements with our theoret-
ically calculated results. These studies provide detail
physical mechanisms to control and optimize the effi-
ciencies of the MWM processes in multi-level systems.

IV. SPATIALLY COHERENT CONTROL OF
MWM VIA PBG

When multiple laser beams interact with multi-
level atomic systems, interesting spatial effects for the
probe beam, such as pattern formation, spatial dis-
placement, and spatial soliton, can occur and be con-
trolled by stronger coupling or pumping laser beams.
In this section, the spatial dispersion properties of the
probe and generated signal in FWM process beams
will be presented, which can lead to spatial shift and
splitting of these weak laser beams. Such beam dis-
placement and splitting can be controlled by the ad-
justable coupling/pumping laser beams via enhanced
cross-Kerr nonlinearity in the multi-level atomic sys-
tems near EIT resonance. Because such enhanced
spatial dispersion behavior follows closely to the tradi-
tional linear and nonlinear dispersion properties in fre-
quency domain for multi-level EIT systems. By con-
trolling the spatial displacements of the weak probe
and FWM beams with coupling/pumping beams, spa-
tial optical switching and routing of one beam or mul-
tiple optical beams can be achieved.

The dressing fileds in the generation of dressed
FWM can interfere with each other, and form spatial
periodic dressed state, then periodic refractive index,
which leads to the formation of electromagnetically in-
duced grating (EIG) and electromagnetically induced
lattice (EIL). Because of the periodic refractive index,
EIG has photonic band gap (PBG). When probe beam
is incident into the EIG, it will have strong Bragg
reflection, and the generated reflection signal is the
FWM signal. Therefore, FWM signal carries the mod-
ulation of PBG and solitons with periodic spatial pro-
file, such as gap and dipole solitons, can form when
the refractive index balances the diffraction. More-
over, if more fields are available in the experiment, a
spatial vortex pattern can form and the FWM can be
modulated to generate vortex soliton.

The protypes of spatial optical switch, router and
multiplexier based on such spatial displacements and
splitting of FWM have been investigated. The soliton
of FWM has potential application in pattern forma-
tion, image storage and processing in optical commu-
nication.

A. Enhanced Kerr Nonlinearities

The Kerr effect is a special kind of nonlinear opti-
cal phenomenon occurring when intense light beams
propagate in crystals, glasses, or gases. Its physical
origin is a third-order nonlinear polarization generated
in the medium. For self-Kerr nonlinearity, the intense
light modifies its own propagation properties, while
for the cross-Kerr nonlinearity the propagation prop-
erties of a light beam is modified by the interaction
with another overlapping beam in a Kerr medium.
Actually, the Kerr effect originates from an instan-
taneously occurring third-order nonlinear response,
which can be described as a modification of the refrac-
tive index. The refractive index of many optical ma-
terials depends on the intensity of the light beam due
to the special third-order nonlinear responses, which
can be written as n = n0 + n2I. Here, n2 is the
Kerr nonlinear index proportional to χ(3). If higher-
order (such as fifth) nonlinearity is considered, the
nonlinear index n2 will be influenced by the inten-
sity of the light beam. With weak CW diode lasers
in three-level systems sharp dispersion of n0 can be
induced due to EIT, which can slow down the opti-
cal pulse propagation. Also, n2 of the three-level EIT
system has been measured which is greatly enhanced
comparing to its two-level subsystem. Since the Kerr
nonlinear dispersion in such EIT medium has been
shown to have an opposite sign (anomalous disper-
sion) from the linear dispersion (Fig. 20), and they
change dramatically near the EIT resonance, the cav-
ity transmission linewidth with such EIT medium can
be greatly modified due to the modified group index
ng = (n0 + n2Ip) + ωp(∂n0/∂ωp + Ip∂n2/∂ωp), where
Ip is the probe beam intensity and ωp is the probe
laser beam frequency. The linear and nonlinear dis-
persion terms (the derivatives) dominate in ng. Since
the two derivatives have opposite signs, ng can take
either positive or negative values, depending on the
frequency detuning and probe intensity.

The effects of the self- and cross-Kerr nonlineari-
ties also induce phenomena of SPM and XPM which
modulate spatial optical beams. Depending on the
sign of the nonlinear refractive index, such intensity-
dependent refractive index can produce either a con-
verging or diverging wave front to change the trans-
verse beam profile during beam propagation. With
SPM a single beam modulates itself during its prop-
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FIG. 20. (a) Linear and (c) nonlinear refractive indices and
their derivatives (b) and (d), respectively, as a function of
∆p

agation through medium. When two copropagating
or counterpropagating beams modulate each other
via nonlinear interaction, it is due to XPM. When
n2 > 0 , the converging wave front counteracts against

diffraction-induced spatial spreading, which can focus
the optical beam to demonstrate the self-focused or
cross-focused beam when the beam power exceeds a
critical value. Similarly, when n2 < 0 the diverging
wave front increases the natural diverging this gives
the self-defocused or cross-defocused beam. In 1990,
Agrawal reported the phenomenon of induced focus-
ing occurring in the self-defocusing nonlinear media
as a result of XPM. When a weak optical beam co-
propagates with an intense pump beam, the XPM in-
duced interaction between the two beams can focus
the weak beam, even though the pump beams exhibits
self-defocusing. Also, electromagnetically-induced fo-
cusing phenomenon was reported in the three-level
atomic system. In the three-level EIT system the ra-
dial intensity profile of the strong pump laser can gen-
erate a modified spatial refractive index profile which
is experienced by the weak probe laser as it tunes
through the transparency window near resonance. It
leads to spatial focusing and defocusing of the probe
beam.

Equations (17) ∼ (19) are the Maxwell-Bloch equa-
tions under rotating-wave and slowly-vary-envelope
approximations, which give the mathematical descrip-
tion of the SPM- and XPM-induced spatial interac-
tions among the probe and two FWM beams.

∂Ep

∂z
+

∂Ep

c∂t
− i∂2Ep

2∂t2
− i∇2

⊥Ep

2kp
=

ikp

n0

[
n1 + nS1

2 |Ep|2 + 2nX1
2 |E′

1|2 + 2nX2
2 |E′

2|2
]
Ep (17)

+η1E1(E
′
1)
∗EF1 + η2E2(E

′
2)
∗EF2

∂EF1
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+

∂EF1
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=
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[
n1 + nS2

2 |EF1|2 + 2nX3
2 |E′
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+η3E1(E
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∂EF2

∂z
+

∂EF2

c∂t
− i∂2EF2
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− i∇2

⊥EF2

2kF2
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ikF2

n0

[
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2 |EF2|2 + 2nX4
2 |E′

2|2
]
EF2 (19)

+η5E1(E
′
1)
∗EF1 + η6E2(E

′
2)
∗Ep

Here, on the left side of these equations, the first
terms describe the beam propagation, the second
terms give the dispersion ones, the third terms are
for the second-order dispersion and the fourth terms
describe the diffraction of the beams diverging prop-
agation. On the right hand, the first terms are the
linear response, the second terms are for the non-
linear self-Kerr effects, the third terms (the third
and fourth terms for Eq. (17)) describe the nonlin-
ear cross-Kerr effects, the fourth and fifth terms (the
fifth and sixth terms for Eq. (17)) represent the phase-
matched coherent FWM processes. z is the longi-

tudinal coordinate in the propagation direction and
kp = kF1 = ω1n0/c. n0 and n1 are the linear refractive
index at ω1 in vacuum and medium, respectively. nS1

2

is the self-Kerr nonlinear coefficient of the field E3,
nS2

2 is the self-Kerr nonlinear coefficient for the gener-
ated FWM field EF1, and nS3

2 is the self-Kerr nonlin-
ear coefficient for the generated FWM field EF2. nX1

2

is the cross-Kerr nonlinear coefficient of the field E3

induced by the strong pump field E
′
1, nX2

2 is the cross-
Kerr nonlinear coefficient of the field E3 induced by
the strong pump field E

′
2, nX3

2 is the cross-Kerr non-
linear coefficient of the field EF1 induced by the strong
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pump field E
′
1, nX4

2 is the cross-Kerr nonlinear coeffi-
cient of the field EF2 induced by the strong pump field
E
′
2. In general the Kerr nonlinear coefficients can be

defined as n2 = Reχ(3)/(ε0cn0), where the third-order
nonlinear susceptibility is given by χ(3) = Dρ

(3)
10 with

D = Nµ2
pµ2

i0/(~3ε0GpG2
i ). µp (µi0) is the dipole ma-

trix element between the states coupled by the probe
beam Ep (between |i〉 and |0〉). ηi are the constants.
ρ
(3)
10 can be determined from the density-matrix equa-

tions for the multi-level medium.

The strong pump beam distorts the phase profiles of
the probe and FWM beams through XPM, which in-

duces the spatial modifications of the probe and FWM
beams, including spatial displacement and splitting,
and produces spatial solitons. Thus, we can neglect
the dispersion, linear term, and coherent FWM pro-
cesses in the equations for simplicity. Actually, these
simplified differential equations are still difficult to
solve analytically. By assuming Gaussian profiles for
the input fields, we can use a numerical approach (i.e.
the split-step Fourier method) to solve Eqs. (17)∼(19).
However, numerical solution of 2D equations requires
considerable computing resource with both x and y di-
rections. For simplicity, we only consider one dimen-
sion in the y-direction. For example, one can consider
Eq. (18) and obtain

∂EF1(z, y)
∂z

=
[

i

2kF1

∂

∂y2
+

ikF1

n0
(nS2

2 |EF1|2 + 2nX3
2 |E′

1|2)
]

EF1(z, y) (20)

The solution of this equation is approximately
EF1(z + h, y) ≈ exp[ihD̂]Exp[ihN̂ ]EF1(z, y). Here h
is the step-length, D̂ = (2kF1)−1∂/∂y2 is the diffrac-
tion factor and N̂ = kF1(nS2

2 |EF1|2 + 2nX3
2 |E′

1|2)/n0

is the SPM and XPM factor. Finally, we can use the
split-step Fourier method to obtain the numerical so-
lution. Furthermore, if we neglect the diffraction term
and the small SPM contribution, Eqs. (17)∼(19) can
be readily solved to obtain the XPM-induced phase
shift φNL imposed on the probe and FWM beams by
the pump. In this case, Eq. (20) reduces to

∂EF1(z, y)
∂z

=
(

i2kF1

n0
nX3

2 |E′
1|2

)
EF1(z, y) (21)

which gives EF1(z, y) = EF1(0, y)exp(iφNL) with
φNL(z, y) = 2kF1n

x3
2 |E

′
1|2z/n0. The additional trans-

verse propagation wave-vector is dky = φ
′
NL. Here,

the strong field E
′

has a Gaussian profile, like the
solid line in Fig. 21 (a). In this case, when nX3

2 > 0,
φNL has a positive Gaussian profile (see the thick solid
line in Fig. 21 (a)) and dky is shown by the dash line in
Fig. 21 (a). The arrows in Fig. 21 (a) represent the di-
rection of dky. The direction of dky is always towards
the beam center of the pump field, and therefore, the
weak Ep,F1,F2 fields (the thin solid lines in Fig. 21 (a))
are shifted to the pump field center. When nX3

2 < 0,
φNL has a negative Gaussian profile (see the thick
solid line in Fig. 21 (b)) and the direction of dky (the
dash line in Fig. 21 ) is outward from the beam center
of the pump field, thus Ep,F1,F2 are shifted away from
the pump field (see Fig. 21 (b)).

Recently, spatial displacements of the probe and
generated FWM beams have been observed in a three-

FIG. 21. Instantaneous nonlinear phase shift induced by a
Gaussian beam in a (a) focusing and (b) defocusing non-
linear medium and the corresponding contribution to the
one-dimensional component of the propagation vector

level V-type, and two-level atomic systems near reso-
nance. The observed spatial shift curves as a func-
tion of frequency detuning reflect the typical en-
hanced cross-Kerr nonlinear dispersion properties in
the EIT systems. This dispersion-like spatial deflec-
tion is named as EISD. The spatial beam displace-
ments can be controlled by the strong control laser
beams and the atomic density. Such EISD can be
used as a single way to measure the Kerr-nonlinear
refractive indices for the multi-level atomic media.
Also, it can be used for controllable all-optical spa-
tial switching and routing of optical signals. The
spot shifts of the FWM and probe laser beams can
be used as the “on” and “off” states of the spatial
all-optical switch. The extinction ratio for the on/off
states, as well as the beam shift distances and direc-
tions, can be optimized by modulating frequency de-
tuning, intensities, and temperature of the medium.
At the same time, beam shifts in opposite directions
have been realized simultaneously for different FWM
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beams, which could be employed to construct switch-
ing/routing arrays. Then, spatial shifts and splitting
of FWM signal beams induced by additional dress-
ing laser beams were investigated which are caused
by the enhanced cross-Kerr nonlinearity due to atomic
coherence in the atomic system. The spatial separa-
tion and number of the split FWM beam can both
be controlled by the intensity of the dressing beam,
and by the modified Kerr nonlinearity and atomic
density. Although spatial beam shifting and splitting
have been reported previously, the current atomic sys-
tems have some advantages: (1) large beam shift and
splitting can be achieved due to enhanced Kerr non-
linearity induced by atomic coherence; (2) the “dis-
persion” curve for the beam displacement has been
measured for the probe beam and matched to the cal-
culated cross-Kerr nonlinear index; (3) displacements
and splitting of the FWM signal beams are experi-
mentally demonstrated, which have never been done
before; (4) specially-designed spatial beam configura-
tion was used to achieve the unique phase-matching
conditions for the FWM processes, and for the beam
shifting and splitting at the same time; (5) the cur-
rent multi-level systems have much better experimen-
tal controls with additional laser beams; (6) such stud-
ies can have important applications in spatial image
storage, spatial entanglement, and spatial quantum
correlation of laser beams.

A spatial soliton can be formed when the diffraction
of a laser beam is compensated by the self-focusing or
cross-Kerr effects in a Kerr nonlinear medium. In re-
cent years, many new type spatial solitons, such as
discrete solitons, gap solitons, surface gap solitons,
and vortex solitons, were investigated (both theoret-
ically and experimentally) in waveguide arrays, fiber
Bragg gratings, Bose-Einstein condensates, and pho-
torefractive crystals. In achieving such interesting
spatial effects, large refractive index modulations are
needed by either fixed periodic structures (such as
waveguide arrays and fiber Bragg grating) or recon-
figurable optical lattices by laser beams as in the pho-
torefractive crystals. Gap soliton exists in band gaps
of the linear spectra in various structures, and the
forward and backward propagating waves both expe-
rience Bragg scattering and form the periodic struc-
ture, which are coupled nonlinearly. A vortex soli-
ton appears as the self-trapping of a phase singular-
ity and from which a screw-type phase distribution
is generated with a singularity at the origin where
the real and imaginary parts of the field amplitude
are zero. Azimuthally modulated vortex solitons (az-
imuthons) have been theoretically considered in self-
focusing nonlinear media. Transverse energy flow oc-
curs between the intensity peaks (solitons) associated
with the phase structure, which is a screw nonlinear

function described by the factor exp(imϕ), where ϕ is
the azimuthal coordinate and the integer number m
is defined as the topological charge. If a phase mask
is used to introduce certain phase delay for half of
the soliton beam, the soliton can split into two parts
with opposite (π) phases between them, called dipole-
mode vector soliton with a Hermite-Gaussian mode
structure. The dipole-mode vector soliton is a vec-
tor soliton originated from trapping of a dipole-mode
beam. In an optically-induced 2D photonic lattice,
dipole-mode solitons can be created with either op-
posite phases or same phase between the two parts.
Vector solitons with one nodeless fundamental com-
ponent and another dipole-mode component can cou-
ple to each other and be trapped jointly in the pho-
tonic lattices. A radially symmetric vortex-mode soli-
ton can decay into a radially asymmetric dipole-mode
soliton that has a nonzero angular momentum, which
can survive for a very long propagation distance. Spa-
tial multi-component soliton has vectorial interaction,
mutually self-trapping in a nonlinear medium, and
their total intensity profile exhibits multiple humps.

The modulation effect of the vortex solitons is in-
duced by the cross-Kerr nonlinear dispersion due to
atomic coherence in the multi-level atomic system.
These FWM vortex patterns are explained via the
three-, four- and five-wave interference topologies.
The complex amplitude vectors can be overlaid at the
observation plane and give rise to the total complex
amplitude vector (XX , CY ) of the interfering plane
waves. The local structures of the optical vortices are
given by the polarization ellipse relation

C2
X/(T 2

X + T 2
Y ) sin2(β + α) (22)

+ C2
Y (T 2

X + T 2
Y ) cos2(β + α) = 1

where β = arctan(TX/TY ) and α is the ellipse ori-
entation. The ellipse axes TX , TY are related to the
spatial configuration of the laser beams (including the
incident beam directions, phase differences between
beams etc.) and their intensities. Such novel spa-
tial FWM gap soliton trains are induced in periodi-
cally modulated self-defocusing atomic medium by the
cross-phase modulation, which can be reshaped un-
der different experimental conditions, such as different
atomic densities, nonlinear dispersions, and dressing
fields. Effects due to the frequency detuning and in-
tensity dependences of the refractive index are consid-
ered in addition to its 1D (axis ξ) periodic variation
by using n(∆, I, ξ) = n1(∆) + n2(∆)I + δn(ξ), where
I is the dressing field intensity. δn = n2 cos(2πξ/Λ)
accounts for the periodic index variation inside the
grating. The grating period is given by Λ = λ/θ,
where θ is the angle between the two pump beams.
The formation and steering of the steady dipole soli-
tons and their dynamical (energy transfer) effects have
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been analyzed. The dipole-mode solitons of two FWM
processes have horizontal and vertical orientations, re-
spectively, which can coexist in the same atomic sys-
tem, and their characteristics can be compared di-
rectly. In detail, we consider the incoherent super-
position of two dipole components, u2 and u3, as a
generalization of a two-component dipole-model soli-
ton {u1, V }. This two-component come from a three-
component solution {u1, u2, u3}. The transformation
of the dipole components is V → {u2, u3}, where
u2 = V cos α and u3 = V sinα (α is a transformation
parameter). Such a straightforward generalization is
indeed possible for a N-component system.

As we have demonstrated, the multi-level atomic
systems have well-controlled linear, as well as non-
linear, absorption and dispersion properties, which
are essential in generating such interesting spatial
gap, vortex and multi-component dipole solitons in
atomic meida. Without the enhanced Kerr nonlin-
earities due to atomic coherence, it will be hard to
reach the needed index contrast for observing these
novel spatial soliton phenomena. With several well-
controlled experimental parameters, one can drive the
Kerr medium to different parameter regions to investi-
gate richer spatial soliton phenomena (such as forma-
tion and dynamics), better explore parametric spaces,
and compare with theoretical predictions. Observing
such solitons and studying their dynamics in FWM is
not a simple extension of the previous results, but a
significant breakthrough to explore different nonlinear
regions and mechanism for forming such spatial dipole
solitons and their evolutions. In solid-state materials,
tenable parametric spaces are limited, so certain the-
oretically predicted phenomena are not reachable in
the experiments. However, in the multi-level atomic
systems, the tenable regions for parameters are broad-
ened, which can be used to explore interesting phe-
nomena, such as transition from one type of spatial
soliton to another and energy transfer between dif-
ferent dipole modes. Also, previous spatial solitons
in solid materials were all done in the probe beam,
not for FWM beams as in the multi-level atomic me-
dia, where Kerr-nonlinear FWM processes are greatly
enhanced and become more efficient. The tenable pa-
rameters, such as atomic density, coupling/pumping
field intensities, and frequency detunings can be easily
and independently controlled experimentally, which
are important in reaching different regions of the sys-
tem. Due to the nature of induced atomic coherence
in the system, the enhanced Kerr indices change dra-
matically with experimental parameters and can reach
high values. Combining with the use of pulsed laser
beams with high beam intensities, the refractive index
contrast ∆n = n2I in the multi-level atomic system
reaches high value, so those interesting novel solitons

can be observed. Also, since the high Kerr index is
induced by the strong dressing/pumping laser beams,
it is the cross-Kerr nonlinearity that plays essential
role in controlling these novel solitons, not the self-
Kerr coefficients as in the cases for photon-refractive
materials. The basic behaviors and mechanics are
different between the multi-level atomic systems and
photorefractive crystals in observing these novel soli-
tons. Such controllable spatial dispersion properties
and spatial solitons can find useful applications in de-
signing new devices for spatial all-optical switching
and logic gate for optical communications and all-
optical signal processing.

B. Photonic Band Gap

1. Periodic Energy Level

In experiment, two pump beams with the same fre-
quency are often used, and act as dressing fields if
the powers are strong sufficiently as shown in Fig. 22
between them. In the spatial interaction region, E2

and E
′
2 will interfere with each other and create a pe-

riodic intensity distribution, which leads to periodic
Rabi frequency amplitude |G2t(x)|2 = G2

20 + G
′2
20 +

2G20G
′
20 cos[2(k2 sin θ1)x]. Therefore, the dressing ef-

fect changes periodically. Influenced by |G2t(x)|2,
the naked state |1〉 will be splitter into two dress-
ing states denoted as |G2t(x)+〉 and |G2t(x)−〉, as
shown in Fig. 22 (a), locating in the two sides of
|1〉, with their eigen-frequencies offset from that of
|1〉 determined by the pump detuning ∆2 and Rabi
frequency amplitude G2t(x) as λGt(x)± = ∆2/2 ±√

∆2
2/4 + |G2t(x)|2. Moreover, we notice that the

split energy levels |G2t(x)+〉 and |G2t(x)−〉 are pe-
riodic along x direction because of the periodic Rabi
frequency amplitude |G2t(x)|2.

The doubly dressed mode with the dressing fields
E3, E

′
3, E2 and E

′
2, shown in Fig. 22, also can lead to

the spatial 2D dressed energy states. First, the inter-
ference between the dressing fields E3 and E

′
3 leads to

periodic dressing effect, and therefore split the naked
state into two dressing states denoted as |G3t(y)+〉
and |G3t(y)−〉, with periodic varying eigenfrequencies
λG3t(y)± = −∆3/2 ±

√
∆2

3/4 + |G3t(y)|2. Next, the
secondary dressing fields E2 and E

′
2 also have dress-

ing effect and the first-order dressing state |G3t(y)+〉
(|G3t(y)−〉) will be split into two second-order dress-
ing states |G3t(y) + G2t(x)+〉 and |G3t(y) + G2t(x)−〉
(|G3t(y) − G2t(x)+〉 and |G3t(y) − G2t(x)−〉), given
that E2 and E

′
2 near the resonance with |G3t(y)+〉

(|G3t(y)−〉). Obviously, the frequencies of the two
second-order dressing states |G3t(y) + G2t(x)±〉 and
|G3t(y)−G2t(x)±〉 are periodical, as shown in Fig. 22
(b). Such spatial periodic energy leves can lead to
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FIG. 22. The Schematic of the R-Y type atomic level sys-
tem to produce MWM signals: (a) The doubly-dressed
FWM. (b) The geometric configuration to generate SWM

signal; k2 and k
′
2 form a SW (black grating) along x, k3 and

k
′
3 form a SW (red grating) along y. (c) Single-dressing

FWM enhancement effect. (d) Doubly dressed FWM en-
hancement effect

periodic enhancement or suppression of Kerr effect,
and furthermore spatial periodic nonlinear refractive
index, i.e., generate the EIG which has PBG, and the
probe beam with frequency falling within this PBG
will be reflected strongly to generate the FWM sig-
nal. So the FWM can be modulated by the EIG to
have spatial periodic profile.

2. Method to Calculate PBG

Generally speaking, there are two methods avail-
able to calculate the PBG which stems from periodic
laser-atom interaction system, namely, the methods of
plane wave expansion and transfer matrix. In transfer
matrix method[1], the EIG or EIL can be divided into
many layers, and the refractive index of each layer is
supposed to be constant. The relationship between
the incident and outgoing light field of each layer is
connected by a transfer matrix of the layer itself. Thus
the transfer matrix of the EIG or EIL in the medium
can be calculated by the product of each layer’s. Fur-
thermore, considering the Bloch’s theorem, the PBG
can be obtained numerically by solving the equation

mπ/a+ik
′
= cos−1{Tr[TΛ(∆)]}/Λ, the left hand sides

of which means that the real part of the Bloch wave-
vector is around the edge of the Brillouin region, the
imaginary part is nonzero, a is the EIG period, and the
incident field (probe field) detuning ∆-dependent TΛ

is the transfer matrix of one period in the EIGs. For
one period, the total transfer matrix can be expressed
by TΛ(∆) =

∑N
j=1 Tj(∆), where Tj is the transfer ma-

trix of the j-th layer when we divide the whole period
into N layers, and its dependence on the probe field
detuning is obvious.

FIG. 23. The PBG calculated by the plane wave expansion
method

Here, we additionally discuss the plane wave ex-
pansion method to calculate the PBG. The spatially
modulated total linear and nonlinear refractive index
is given by n(ζ) = n0 + δn1 cos(2k2ζ)+ δn2 cos(4k2ζ),
where n0 is the spatially uniform refractive index; δn1

and δn2 are the coefficients for spatially varying terms
for the modulated index. By expanding the electrical
field of the incident field into Fourier series multiplying
the Bloch wave, and the spatially periodical index into
Fourier series, then substituting this two expressions
into the Maxwell equation, next solving the homoge-
neous equations, we can obtain

κ± = ki ±
√
{k2

p[1 + χ1 + (χ2
2 − χ2

3)χ
′
2]− k2

i }2 − k4
p[χ2χ3χ

′
2 + (χ2

2 + 2χ2χ3)χ
′
3]2/2ki,
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FIG. 24. The three panels are the cut plots of the Talbot
effect at the initial place (a), the quarter Talbot length (b)
and the Talbot plane (c)

which is called dispersion relation and reveals the rela-
tion between the Bloch wave-vectors κ± and the probe
field ∆1. Here, χm & χ

′
m (m = 1, 2, 3) are the Fourier

coefficients of the susceptibility; ki is the wave vector
component projected on the EIG periodic orientation
of the probe field. A region of ∆1 can be found sat-
isfying Re(k±ai/π − 1) = 0, which is right the PBG.
As an instance, Fig. 23 shows the PBG calculated by
the plane expansion method, in which the flat region
represents the PBG.

3. Nonlinear Talbot Effect

The Talbot effect[2∼6], first observed by H. F. Tal-
bot in 1836, is a near-field diffraction phenomenon
in which the light field spatially imprinted with pe-
riodic structure can have self-imaging at certain pe-
riodic imaging planes (the so-called Talbot plane).
Such self-imaging effect holds a range of applications
from image preprocessing and synthesis to optical
computing[7]. In this following paragraph, we will give
an introduction on how to generate controllable Tal-
bot self-imaging with FWM and SWM signals.

Since dressing effect can modify the FWM and
SWM signals, we can construct spatial periodic dress-
ing effect to modify the usual spatial uniform MWM
signals into spatial periodically dressed signals, with
spatial periodic intensity distribution in the transverse
dimension. The periodic pattern of the MWM signals
can be flexibly controlled by adjusting the atomic co-
herence.

The Talbot effect with EIG[8] in higher nonlinear
optical process has been studied. Specifically, the
1D and 2D periodic dressing effects are determined
by the spatial periodic Rabi frequency |G2t(x)|2 and
|G2t(x)|2 & |G3t(y)|2, respectively. Taking the 2-D
case for instance, we can obtain the dressing states
|G3t(y) + |G2t(x)±〉 and |G3t(y) − G2t(x)±〉 with 2-
D periodic varying frequencies λG3t(y)+G2t(x)± and
λG3t(y)−G2t(x)±, as shown in Fig. 24 (b). Then the pe-
riodic enhancement condition, suppression condition
can be obtained, and the FWM is modulated to have
spatial periodic intensity distribution.

Now, we consider the propagation of the peri-
odic FWM (SWM) signals. For simplicity, we de-
fine that the signal output plane as z = 0, adopt
the paraxial approximation. Therefore, the propaga-
tion of the MWM signals can be regarded as a Fres-
nel diffraction process. In the perspective of Fourier
optics, the transfer function of a Fresnel diffraction
system with z as the propagation axis can be ex-
pressed as HF(ξ) = exp(ikz0z)exp(−iπλzξ2), where
ξ is the spatial frequency and kz0 is the input sig-
nal wave-vector projected on the z axis. It is ob-
vious that a signal with multi-ξ components can be
distorted in the propagation because a ξ-quadratic
phase is introduced to it in the diffraction. How-
ever, for the periodic MWM signal described above,
the self-imaging without distortion at certain prop-
agation lengths can be demonstrated. The peri-
odical electrical field distribution of the MWM sig-
nal g0(x, y) can be expanded into 2D Fourier series
as g0(x, y) = Σ∞m,n=−∞cm,nexp[i2π(nx/dx + my/dy)]
and in spatial frequency domain can be further writ-
ten as G0(ξ, η) = Σ∞m,n=−∞cm,nδ(ξ − n/dx) · δ(η −
m/dy), where cm,n is the Fourier coefficient. So,
after the Fresnel diffraction, multiplying the MWM
signal and the transfer function in spatial frequency
domain, we can obtain the MWM signal at a z

distance as: G(ξ, η) =
∞∑

m,n=−∞
cm,nδ(ξ − n/dx) ·

δ(η−m/dy)exp(ikz0z)exp{iπλ1z[(n/dx)2+(m/dy)2]},
where kz0 is the projection of the MWM signal
wave vector on z the axis. So after inverse Fourier
transformation, we can get the signal field g(x) =
g0(x)exp(ikz0z) In light of the fact that |g(x)|2 =
|g0(x)|2, we say at z = 2qd2

x/λ1 we can see the self-
image of the MWM signals, and zT = z|q=1 is defined
as the Talbot length.

4. Third- and Fifth-Order Nonlinearities

In nonlinear optics[9,10], the susceptibility χ con-
nects with the refractive index of the medium by the
relation n =

√
1 + Re(χ). Taking into account higher-

order terms one can represent the refractive index as
power-law Kerr-type nonlinearity, n = n1 + n2I +
n4I

2 + · · · with the intensity I = ε0c|E|2/2. Ob-
viously, if nonlinear coefficients n2 and n4 have the
same signs, the corresponding models exhibit sim-
ply increasing strength of nonlinear self-action, self-
focusing for n2 > 0 and n4 > 0 or self-defocusing for
n2 < 0 and n4 < 0. More interesting situation oc-
curs if the two nonlinear contributions have opposite
signs, i.e., n2n4 < 0 and this case is usually called the
“competing” cubic-quintic (CQ) nonlinearity, which is
widely used in solitonic science to seek stable higher-
order soliton solutions. Let n4 be a self-focusing type,
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i.e., n4 > 0. Then, for any sign of Kerr contribu-
tion n2, there will be a threshold power of light beam
E, above which higher-order self-focusing will pre-
dominate both the linear diffraction and n2 contri-
bution. In this case the beam will collapse, similar to
the pure Kerr case with n2 > 0 and n4 = 0. How-
ever, if n4 < 0 , then the collapse can be suppressed,
for the light beam with high enough intensity ex-
perience effectively self-defocusing environment, i.e.,
dn/dI < 0. Here the threshold intensity is given by
Ith = −n2/2n4. That is the reason why CQ nonlin-
earity can be a charming research focus in the past
decades.

As one example, even though higher-order solitons
cannot stably exist in a Kerr medium, they have been
numerically confirmed in a system with CQ nonlin-
earity. Experimentally, a CQ nonlinear dielectric re-
sponse with positive cubic and negative quintic con-
tributions has been observed in chalcogenide glasses,
and in organic materials. However, in all these cases
the quintic nonlinearity is accompanied by signifi-
cant higher-order multiphoton processes such as two-
photon absorption, therefore the validity of the CQ
models to light propagation in these materials requires
additional explorations. If both the third-order and
fifth-order nonlinearities can be enhanced with EIT,
and at the same time the absorption can be effectively
suppressed, the formation of a higher order stability
soliton will be ensured.

C. EISD and Splitting of FWM

1. Spatial Dispersion of FWM Beams

Spatial displacements of the probe and generated
FWM beams are observed in a three-level V -type,
as well as a two-level, atomic system near resonance.
The observed spatial dispersion curves reflect the typ-
ical dispersion properties in the EIT systems and are
the results of the cross-Kerr nonlinear coefficients en-
hanced by the induced atomic coherence in the multi-
level systems. The spatial beam displacements of the
weak probe and the FWM signal beams are controlled
by the strong control laser beam and the atomic den-
sity. Studying such controlled spatial beam shifts can
be important in image storage and in generating spa-
tially correlated (entangled) laser beams in multi-level
EIT systems. In this section, we show that by arrang-
ing the laser beams in a certain spatial configuration,
such sharp dispersive features in frequency domain for
the probe beam can be converted into spatial beam

displacement controlled by the strong coupling laser
beam. For a three-level V-type system, as shown in
Fig. 25 (a), the control (coupling) beam E2 in one
transition can spatially deflect the probe beam Ep in
another transition when these two laser beams prop-
agate through the atomic medium with a small an-
gle. As the probe frequency is detuned, the spatial
deflection shows a dispersion-like change in its dis-
placement, which exactly mimics the dispersion curve
as observed for the Kerr-nonlinear index of refraction
in the EIT system. Also, when two additional pump
laser beams (E1 and E

′
1) are applied to the probe

transition, as shown in Fig. 25 (b), to generate a FWM
signal EF1, this FWM signal can also be spatially dis-
placed by E2. Again, a dispersion-like spatial deflec-
tion curve for the FWM signal is seen with respect to
the probe frequency detuning. Such EISD can be used
for spatial switching and routing, and as an easy way
to measure the Kerr-nonlinear indices of refraction for
the multi-level atomic media. When the control beam
E2 is tuned to the same transition as the probe and
pump beams, as shown in Fig. 25 (c), it becomes an
effective two-level system. Efficient deflection of EF1

by E2 in such two-level atomic system has been also
observed and compared with the three-level V -type
system.

There are several features in this work that are dis-
tinctly different and advantageous over the previously
studied spatial shifts of laser beams in atomic systems.
First, the EISD of both the probe beam and the gen-
erated FWM beam can be directly observed and con-
trolled by another strong (control) laser beam. Sec-
ond, the cross-Kerr nonlinear index n2 can be directly
measured by such simple EISD technique. Third, en-
hanced cross-Kerr nonlinearity in spatial domain can
be achieved by increasing atomic density (cell tem-
perature) or the power of the strong control beam.
Also, the effects of different dressing schemes on spa-
tial deflection of the FWM beam have been carefully
considered and compared.

Under our experimental conditions, the sodium va-
por is an EIT-enhanced Kerr medium for the propa-
gating laser beams. The laser beam E2 (or E1 ) is ap-
proximately 102 times stronger than the beam E

′
1, and

104 times stronger than the weak probe beam Ep, so
E1 and E2 beams can control the weaker Ep and EF1

beams. At the same time, the field E
′
1 can also slightly

affect the displacement of the EF1 beam. The math-
ematical description of the propagation properties of
the weak beams Ep and EF1 due to self- and cross-
Kerr nonlinearities of the control and pump beams can
be obtained through numerically solving the following
coupled equations:
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FIG. 25. (a) Three-level V -type EIT system. (b) Three-level V -type system with FWM signal EF1 generated by the

pump beams (E1, E
′
1) and the probe beam (Ep) in the transition |0〉 − |1〉. The FWM process can be modified by the

control beam E2. (c1) Two-level system with four laser beams tuned to the same transition. (c2) Dressed-state picture
corresponding to the two-level system in (c1). (d) Spatial beam geometry used in the experiments

∂Ep

∂z
− i∇2

⊥Ep

2kp
=

ikp

n0
(nS1

2 |Ep|2 + 2nX1
2 |E1|2 + 2nX2

2 |E2|2)Ep (23-1)

∂EF1

∂z
− i∇2

⊥EF1

2kF1
=

ikF1

n0
[nS2

2 |EF1|2 + 2nX3
2 |E1|2 + 2nX4

2 |E2|2 + 2nX5
2 |E′

1|2]EF1 (23-2)

where z is the longitudinal coordinate in the propaga-
tion direction, kp = kF1 = ω1n0/c, n0 is the linear re-
fractive index at ω1, nS1,S2

2 are the self-Kerr nonlinear
coefficients of the fields Ep and EF1 , and nX1−X5

2 are
the cross-Kerr nonlinear coefficients due to the fields
E1,2 and E

′
1, respectively. These nonlinear Kerr co-

efficients can be controlled by the parameters of the
relevant laser fields, such as field detuning and power.
Since high-power pulsed dye lasers are used in the ex-
periment, Doppler effect and the power broadening
effect are considered in the calculation according to
Eq. (23). By assuming Gaussian profiles for the input
fields, Eqs. (23-1) and (23-2) are solved by using the
split-step Fourier method.

Figure 26 shows spatial displacements of Ep and
EF1, respectively, versus frequency detuning ∆1

(∆1 = Ω1 − ω1 for the three-level system or Ω2 − ω1

for the two-level system) with a fixed control beam
(∆2 = Ω2 − ω2 = 0). When the pump beams E1 and
E
′
1 are blocked (Fig. 25 (a)), it is the simple three-level

V -type EIT system. For the fixed E2, the measured
probe beam displacements show a spatial dispersion-
like displacement curve as depicted in Fig. 26 (a) (the

triangle points). The data points can be fitted well
with the calculated n2 versus ∆1. The inset in Fig. 26
(a) shows the images of the measured probe beam
spots versus ∆1 in the two-level system. In the ∆1 < 0
region, the smaller beam spots are an indication of
self-focusing effect for the probe beam due to positive
self-Kerr nonlinear index, while the larger beam spots
in ∆1 > 0 region are due to self-defocusing because
of the sign change in the self-Kerr nonlinear coeffi-
cient. When Ep is tuned to the transition |0〉 − |2〉,
the system becomes an effective two-level one. Simi-
larly, with E2 fixed, the spatial displacements (black
squares) also show the same dispersion-like curve, as
shown in Fig. 26 (a). Again the solid (black) line
is the calculated cross-Kerr nonlinear coefficients as
a function of ∆1, which fits perfectly well with the
measured EISD. When the pump beams (E1 and E

′
1)

are on (Fig. 25 (b)), an efficient FWM signal EF1

is generated by the pump beams together with the
probe beam, which propagates in a different direction
as shown in Fig. 25 (d). With a fixed E2, the gen-
erated EF1 (in either the three-level or the two-level
system) is deflected differently when the frequency de-
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FIG. 26. (a) EISD shift of the beam Ep and the fitted
cross-Kerr nonlinear coefficient n2 versus ∆1 at 230◦C in
the two-level system (black squares) and the three-level
system (red triangles), respectively. Inset: EISD spots of
Ep versus ∆1 in the two-level system. (b) EISD shift of
the beam EF1 and the fitted cross-Kerr nonlinear coef-
ficient versus ∆1 at 230◦C in the two-level system (black
squares) and the three-level system (red triangles), respec-
tively. Inset: EISD spots of EF1 versus ∆1 in the three
level V -type system. The parameters are Gp = 0.2 GHz,

G1 = G
′
1 =1.1 GHz and G2 =9.7 GHz[29]

tuning of the probe beam (∆1) is scanned, as shown
in Fig. 26 (b). The dispersion-like curves are narrower
than the probe beam deflections, but the general be-
haviors are very similar to the ones as in Fig. 26 (a).
The spatial deflection curves are well fitted with the
calculated cross-Kerr nonlinear indices of refraction
for the three-level V -type and two-level systems (solid
curves), respectively. The inset in Fig. 26 (b) shows
the images of the measured FWM beam spots versus
∆1 in the three-level system.

The observed spatial displacements of the probe
(Ep) and FWM (EF1) beams are caused by the non-
colinear propagations of the laser beams and the en-
hanced cross-Kerr nonlinear indices of refraction due
to the strong laser beams E2 and E1. For simplicity,
let’s only consider the strong control beam E2. Dur-
ing its propagation through the vapor cell, the wing
of E2 interacts with the intensity profile of either Ep

or EF1, and distorts its phase profile to induce an op-
tical waveguide through XPM. The nonlinear phase
shift can be written as φNL = 2kF1n2|A2|2z/n0 and
the additional transverse propagation wave-vector is
δk⊥ = φ

′
NL. In this case, when n2 > 0, the direction

of δk⊥ is to the beam center of E2, and, therefore,
Ep,F1 is deflected closer to E2; when n2 < 0, the di-
rection of δk⊥ is outward from the beam center of
E2, thus Ep,F1 is deflected away from E2. Accord-
ing to the expression for φNL, the amount of spatial
shift is proportional to the cross-Kerr nonlinear co-
efficient, the field intensity and the propagation dis-
tance. Hence, the spatial displacements of the probe
and FWM beams results from the cross-Kerr nonlin-
ear coefficient induced by the strong control field, and
therefore can be controlled by it.

The spatial displacements of the probe and FWM
beams are mainly determined and controlled by the
large cross-Kerr nonlinear coefficients of the strong

laser fields. However, the cross-Kerr effects induced
by the relatively weaker pump beam(s) can also exist.
Since each of the pump and probe beams can be spa-
tially displaced by the strong control beam (and by
each other), the final spatial displacement of the gen-
erated FWM beam can be affected by such secondary
displacement effects. In the above discussion and cal-
culations, we have only considered the leading contri-
butions from the strongest fields, which explained the
observed spatial displacements quite well. Also, when
Ep and EF1 get stronger (with higher probe and more
efficient FWM process), incoherently coupled soliton
pairs can be formed by Ep and EF1 due to the in-
terplays between the diffraction effect and self-Kerr
nonlinear effect. Under such conditions, we can ob-
tain the solutions of Ap,F1(x) = A0sech(A0x) for the
bright-bright soliton pair in the self-focusing EIT me-
dia and of Ap,F1(x) = A0[1 − sech2(A0x)]1/2 for the
dark-dark soliton pair in self-defocusing EIT media.
Here A0 is the initial envelope amplitude. The en-
hanced self-Kerr and cross-Kerr nonlinear coefficients
due to induced atomic coherence or EISD enable the
formations of such spatial soliton pairs with much
lower input laser powers, which can be very impor-
tant for their applications in optical communications.

2. Spatial Split of FWM Images

In the previous section, due to the enhanced cross-
Kerr nonlinear effects, the EISD shifts for the proble
as well as the FWM beams can be experimentally ob-
served. The observed spatial displacements are fitted
to the calculated cross-Kerr nonlinear coefficients in
the systems, which provide a new and easier way to
determined various cross-Kerr nonlinear coefficients in
the multi-level atomic systems. In this section, we will
present how to achieve spatial splitting by enhanced
cross-Kerr nonlinear effects, the detailed experimen-
tal setups and configuration are similar to the case of
spatial shift experiment in Fig. 25. More information
can be found in Ref. [11].

As shown in the insets of Figs. 27 (a) and (b) (lower
panels), the probe and FWM signal (EF1) beams are
displaced and split as the frequency detuning ∆1 of
the probe beam is scanned through resonance. The
displacements of the probe and FWM beams follow
the shape of nonlinear dispersion. Here, we only con-
centrate on the beam splitting effect. Figure 27 (a)
gives the splitting distance of the probe beam for dif-
ferent ∆1. The solid curve is a fit to the cross-Kerr
nonlinear index n2 for the probe beam. The splitting
distance of EF1 is given in Fig. 27 (b) as a function
of ∆1, which is also fitted to n2, as will be discussed
later.

The Kerr nonlinear index is always zero at the exact
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FIG. 27. (a) Measured probe beam splitting versus ∆1 (square) and the fitted n2 curve (solid) with G
′
1 =20.6 GHz at

250◦C. Inset: spots of the probe beam versus ∆1. (b) Measured EF1 beam splitting versus ∆1 (square) and the fitted

n2 curve (solid) with G
′
1 =20.6 GHz at 265◦C. Inset: EF1 beam profiles with ∆1 = −30 GHz (triangle), ∆1 = −22 GHz

(square), ∆1 = −17 GHz (circle) in top right corner; and spots of the EF1 beam versus ∆1 in bottom. (c) EF1 beam

profiles at 230◦C (triangle), 240◦C (square), 260◦C (circle) and 280◦C (reverse triangle), respectively, with G
′
1=20.6

GHz at ∆1 = −10 GHz . Inset: EF1 beam splitting versus atomic density N . Spots of EF1 beam versus N . (d) EF1

beam splitting versus G
′
1 with ∆1 = −10 GHz at 265◦C. The other parameters are ∆2 = 0, G2 = 0, G1 =1.5 GHz , and

G
′
2 =10.8 GHz[30]

resonant condition. The temperature dependence of
the FWM beam splitting distance is given in Fig. 27
(c), which shows a quick increase as temperature rises
and then a slow decrease as the temperature further
increases. Double-beam profiles are clearly shown in
the figure. The intensity dependence of the FWM
beam shift as a function of the pump beam (E

′
1) inten-

sity is depicted in Fig. 27 (d), which gives a continued
increase as G

′
1 gets larger. It is interesting to notice

that when ∆1 < 0 the beam splitting occurs in the
y (vertical) direction, but split in the x (horizontal)
direction when ∆1 > 0 as shown in Figs. 27 (a) and
(b), respectively. This phenomenon can be explained
by the relative positions between the weak beams and
the strong dressing (controlling) beams. For the weak
probe beam E3 (Fig. 27 (a)), in the ∆1 < 0 region,
the beam shift in the y direction results from the at-
traction (n2 > 0) of the strong E

′
2 beam. This makes

it get closer to E
′
2, which also splits the probe beam

in y direction. In the ∆1 > 0 region, the probe beam
shifts to the down-right direction due to the repul-
sion (n2 < 0) of E

′
2 (which is slightly misaligned to

the left side) and gets closer to E
′
1, which can split

the probe beam in x direction. Also, for the weak
FWM beam EF1 (Fig. 27 (b)), in the ∆1 < 0 region,
it shifts above E

′
1 in the y direction induced by E

′
2,

and such E
′
1 beam can split EF1 in y direction. While

in the ∆1 > 0 region, the FWM EF1 beam shifts in
the down-right direction due to the repulsion (n2 < 0)
of E

′
2 and therefore, splits in x direction induced by

E
′
1.

Figure 28 depicts the beam profiles of the FWM
beam EF2 as a function of various parameters. Fig-
ure 28 (a) presents EF2 profiles for different probe
frequency detuning ∆1. As one can see that the beam
breaks up into two beams at certain value of ∆1. For
∆1 < 0 the atomic system is a focusing medium due
to self-Kerr nonlinearity. The insets in Fig. 28 show
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the spatial beam images.
To understand the observed beam splitting of the

probe and FWM beams, we need to consider various
SPM and XPM processes. The spatial beam break-
ing is mainly due to the overlap between the weak
probe and/or FWM beams and the strong coupling
or pump beams. Due to XPM, the nonlinear phase

can have more than one minimum when the cross-
Kerr index n2 increases, which generates several inten-
sity minima in the profiles of the FWM beams. The
propagation equations for the probe and FWM beams
with only the most relevant coupling/pump beams for
beam splitting are

∂E3

∂z
− i∇2

⊥E3

2k3
=

ik3

n1

[
nS1

2 |E3|2 + 2nX1
2 |E′

1|2 + 2nX2
2 |E′

2|2
]
E3 (24-1)

∂EF1

∂z
− i∇2

⊥EF1

2kF1
=

ikF1

n1

[
nS2

2 |EF1|2 + 2nX3
2 |E′

1|2
]
EF1 (24-2)

∂EF2

∂z
− i∇2

⊥EF2

2kF2
=

ikF2

n1

[
nS3

2 |EF2|2 + 2nX4
2 |E′

2|2
]
EF2 (24-3)

Here, z is the longitudinal coordinate; k3 = kF1 =
kF2 = ω1n1/c; n1 is the linear refractive index; nS1−S3

2

are the self-Kerr coefficients of E3,F1,2; nX1−X4
2 are

the cross-Kerr coefficients of E3,F1,2 induced by E1,2

and E
′
1,2. Equations (24) can be solved by using the

commonly employed split-step Fourier method.

FIG. 28. (a) EF2 beam profiles versus ∆1 at 250◦C. The

other parameters are G1 = G
′
1 = 0, G2 =1.9 GHz and

G
′
2 =20.8 GHz. The solid lines are the experimental re-

sults and the dotted lines are the calculated EF2 beam
profiles

The Kerr nonlinear coefficient is negative for a self-
defocusing medium and positive for a self-focusing
one, which is given by n2 ≈ Reρ(3)

10 /(ε0cn0). One
can solve the coupled density-matrix equations to ob-
tain ρ

(3)
10 , i.e., ρ

(3)
a = −iGF1G

′2
1 /[d1Γ1(d1 + G

′2
1 /Γ0 +

G
′2
1 /Γ1)] for nX3

2 (induced by the strong E
′
1 field),

ρ
(3)
b = −iGF2G

′2
2 /[d1d2(d1 + G

′2
2 /d2)] for nX4

2 (in-

duced by E
′
2) and ρ

(3)
c = −iG3G

′2
1,2/(d1d2d3) for

nX1,2
2 (induced by both E

′
1 and E

′
2 fields) with d2 =

Γ1+i(∆1−∆2), d3 = d1+G
′2
1 /Γ1+G

′2
2 /(d2+G

′2
1 /d4),

d4 = Γ1 − i∆2. Here, GF1,F2 are the Rabi frequencies
of EF1,F2 and ∆1 (∆2) is the detuning of the fields
E1,3 and E

′
1 (E2 and E

′
2). In addition, these three

weak beams can be spatially shifted by the other cou-
pling/pump beams.

The solid curves in Fig. 27 (a) and (b) are the cal-
culated cross-Kerr nonlinear coefficients, which show
well to the measured data. So the measurements of
spatial splitting can be used to determine the cross-
Kerr nonlinear index. With fixed experimental pa-
rameters (such as atomic density, frequency detun-
ing, spot sizes, and atomic decay rates), the measured
beam profiles are fitted to the calculated results (from
the propagation equations) with adjustable signal am-
plitudes and constant background, which show excel-
lent agreements, as shown in Fig. 28. Such direct com-
parisons indicate the validity of Eqs. (24) in describing
the spatial splitting of the FWM beams by other laser
beams.

D. Stable Spatial FWM Solitons

1. FWM Dipole Soliton in Laser-Induced Atomic
Gratings

As mentioned in the previous section, in the self-
defocused nonlinear medium (∆1 > 0), the XPM due
to the presence of another laser beam can induce a
focusing effect, which can be used to generate spatial
solitons and other interesting nonlinear effects in the
media. In this section, we show that charged dipole-
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FIG. 29. spatial beam geometry used in the experiment.
(b) Two FWM processes EF1 and EF2, with five beams

E1, E
′
1, E2, E

′
2, and E3 on, in a cascade three-level atomic

system. EF1 (TM polarization) in (c) and EF2 (TE polar-
ization) in (d) are mainly steered by the horizontally- and
vertically-aligned EIG1 and EIG2, respectively

mode solitons can be created in the FWM beams gen-
erated inside a multi-level atomic medium, in which
the self-Kerr and cross-Kerr nonlinearities are greatly
enhanced by laser-induced atomic coherences. The
key to observe such novel dipole-mode solitons is to
create a high enough index contrast (via Kerr non-
linearity n2I) in the atomic medium by laser-induced
index gratings. Two component dipole-mode solitons
are generated in two coexisting FWM signal beams in
a three-level atomic system. The easy controls of ex-
perimental parameters in the multi-level atoms make
the current system ideal to investigate the formations
of multi-component spatial solitons and their nonlin-
ear dynamics. One of the advantages of such spa-
tial solitons is that the wave-guiding effect is induced
by focusing due to the cross-Kerr nonlinearity of the
FWM beam, not self-focusing which normally suffers
catastrophic absorption.

Let us consider the EIG under the geometrical con-
figuration as Fig. 29 (a) and energy level system as
Fig. 29 (b). EIG can form when the weak probe beam
E3, coupled to one atomic transition, interacts with
two strong non-collinear beams (either beams E1 and
E
′
1 in Fig. 29 (c), or E2 and E

′
2 in Fig. 29 (d)), that is

coupled to the same or different atomic transition in
an atomic medium. The beams E1 and E

′
1 (or beams

E2 and E
′
2) induce their own grating EIG1 (or EIG2).

Such periodic refractive-index changes create two pho-
tonic band gaps, which prohibit the probe propagation
and give rise to the highly-efficient omnidirectional re-

flections. Thus, the FWM signals (EF1 and EF2) are
the results of the electromagnetically-induced diffrac-
tion (EID) of the probe beam E3 by the induced EIG1
and EIG2, respectively. The fringe spacing of EIG1
and EIG2 are determined by αi = λi/θi (i = 1, 2).
The dipole-like patterns of EF1 and EF2 are cre-
ated by the horizontally- and vertically-aligned EIG1
and EIG2, respectively. Furthermore, the generated
FWMs and probe field can form a vector soliton.

A radially asymmetric dipole-mode vector soliton
includes one nodeless component (the probe beam E3)
and two dipole-like components with spatial struc-
tures of Hermite-Gaussian modes (HG10 for EF1

and HG01 for EF2). We mainly study two cou-
pled FWM beams EF1 and EF2 (with the same fre-
quency), which have perpendicularly oriented dipole
components, propagating along z direction and dif-
fusing along one transverse direction. We assume
EF1 = AF1(ζ)exp(ikF1z), EF2 = AF2(ζ)exp(ikF2z)
and Etot = EF1 + EF2 . These two coupled FWM
fields satisfy the evolution equations in the Kerr
medium as:

∂EF1

∂z
− i∇2

⊥EF1

2kF1
=

ikF1

n1
(nS1

2 |EF1|2 + 2nX1
2 |E1|2

+ 2nX2
2 |E′

1|2 + 2nX3
2 |E′

2|2)EF1 + η1E1(E
′
1)
∗EF2

(25-1)

∂EF2

∂z
− i∇2

⊥EF2

2kF2
=

ikF2

n1
(nS2

2 |EF2|2 + 2nX4
2 |E2|2

+ 2nX5
2 |E′

2|2 + 2nX6
2 |E′

1|2)EF2 + η2E2(E
′
2)
∗EF1

(25-2)

Two-component dipole-mode solitons are natural
results from such energy-dependent nonlinear prop-
agation equations. nS1,S2

2 are self-Kerr nonlinear co-
efficients of EF1 and EF2, and nX1−X6

2 are cross-Kerr
nonlinear coefficients of E1,2 and E

′
1,2 to EF1 and

EF2, respectively. As mentioned above, these nonlin-
ear coefficient can be also obtained according to the
density matrix equation, and the density matrix ele-
ments have the form ρ

(3)
10 ∝ 1/

∏3
i=1[ai+G2

j cos2(k2ζ)],
in which the periodic term is derived from the for-
mation of EIG. The coefficients in the last terms in
Eqs. (25-1) and (25-2) are η1 = ξµ5

10Fa and η2 =
ξµ5

21Fb with ξ = i4πω1N/ch4, where Fa and Fa relate
to the Rabi frequencies of the involved fields, the fre-
quency detuning ∆1 (∆2) for E1,3,F1,F2 and E

′
1 (E2

and E
′
2), and the relaxation rates of the system.

The resulting superposition of the two perpendicu-
lar dipole-soliton components, EF1 and EF2, is a gen-
eralization from a two-component dipole-mode soliton
(E3, EF) to a three-component one (E3, EF1, EF2).
The total intensity (I = |E3|2 + |EF1|2 + |EF2|2) is
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quasi-stable in propagation after a long enough prop-
agation distance (or high enough atomic density). The
three components of the vector soliton carry topolog-
ical charges 0, +1, −1, respectively, and the total an-
gular momentum is zero (mF1+mF2+m3 = 0), which
makes the solution stable, where m3,F1,F2 are topolog-
ical charges of E3,F1,F2.

The in-phase dipole modes of EF1 and EF2 are
created (or split) by the horizontally- and vertically-
aligned EIG1 and EIG2, respectively. Thus, the two-
component dipole-mode soliton solutions of EF1 and
EF2 can be written as

EF1 = u1sech[u1(kF1n
S1
2 /n0)1/2(r − r1)] cos(Mϕ/2) ·

exp(imF1ϕ + iφ1)exp(ikF1z)

and

EF2 = u2sech[u2(kF2n
S2
2 /n0)1/2(r − r2)] cos(Mϕ/2) ·

exp(imF2ϕ + iφ2)exp(ikF2z),

where u1,2 are soliton amplitudes; r1,2 are initial peak
positions; M is the number of intensity peaks; φ1,2 are
nonlinear phase shifts (φ1,2 = 2k1,2n2I2,1e−r2/2/n1).
Such solutions possess the dipole-soliton characteris-
tics, and two humps form the two poles of the dipole
soliton, which are trapped jointly in the neighbour
photonic fringes.

The generated FWM (EF2) beam can be signifi-
cantly influenced by the dressing beams G

′
1, G1 or

G
′
1 & G1 in the cascade three-level system (Fig. 30).

We present the vertical dipole-mode solitons of EF2

with different dressing configurations. The EF2 beam
splits into two coherent spots (i.e., dipole pattern, as
shown in Fig. 30) due to the modulated transverse
nonlinear phase shift φ2 induced by the vertically-
aligned EIG2. At low nonlinear dispersion |n2|, EF2

only experiences the linear diffraction. With maxi-
mum |n2| at |∆1| =16.5 GHz (Fig. 30 (b)), vertically-
oriented dipole soliton is generated due to the bal-
anced interaction between the spatial diffraction and
the cross-Kerr nonlinearity. In the self-focusing re-
gion of the atomic medium (from ∆1 = −30 GHz to
∆1 = −10 GHz ), there exists energy exchange be-
tween the two parts of the EF2 dipole mode. At res-
onance or large frequency detuning, the dipole-mode
soliton of EF2 decays into a nodeless fundamental one.
Under the case of enhanced FWM due to dressing
(satisfying ∆1 + ∆2 = |G1 + G

′
1|2/∆2) in Fig. 30 (a),

EF2 with both G
′
1 and G1 dressing is stronger than

with G
′
1 or G1 dressing separately, or without dress-

ing fields. For stronger G
′
1, the dressing effect of G

′
1

is larger than that of G1. In the enhancement case
with ∆1 =16.5 GHz , the nonlinear refractive index is
n2 = −9×10−7 cm2/W for EF2, which is much larger
than n2 = −2 × 10−8 cm2/W in the suppressed case
with ∆1 =4.5 GHz (satisfying ∆1 + ∆2 ≈ 0). The

FIG. 30. Images at different ∆1 (i-iv) and beam profiles
at ∆1 =16.5 GHz (a) of dipole-soliton EF2 in the cascade

three-level system with G
′
2 = G2 =20 GHz , G

′
1 =55 GHz

and G1 =45 GHz ((i) and squares), G
′
1 =55G Hz and

G1 =0 ((ii) and circles), G
′
1 =0 and G1 = 45 GHz ((iii) and

triangles), and without dressing fields ((iv) and diamonds).

(b) Nonlinear refractive index n2 of EF2 with G
′
1 and G1

dressings[58]

FIG. 31. Omnidirectional Bragg reflections of EF1 and
EF2 beams versus α (a), and EF2 beam versus θ2 (b), the
solid curves are calculated results of Bloch wave-vectors
<(k±). The parameters are ∆1 = −15 GHz , ∆2 = −4.5

GHz, G
′
1 = G1 = G

′
2 = G2=20 GHz , and G3 =0.5 GHz

cross-Kerr nonlinearity in the enhancement case can
well compensate the diffraction in the propagation,
while it is too weak to balance the diffraction without
the enhancement.

Since FWM signal can be modulated by the EIG,
the analysis of the PBG of EIG is essential. The
spatially modulated total linear and nonlinear refrac-
tive index is given by n(ζ) = n0 + δn1 cos(2k2ζ) +
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δn2 cos(4k2ζ), where n0 is the spatially uniform re-
fractive index; δn1 and δn2 n are the coefficients
for spatially varying terms for the modulated index.
The width of the band gap is given by ∆gap =
2ω0(δn1 + δn2)/πn0, where ω0 is the center frequency
of the forbidden band. Moreover, by coupled mode
techniques with Bloch’s theorem, we can also get the
equation displayed in Part IV. B. 2 (on page 112),
with kp = k3 cos α, and obtain the dispersion curves
of Re(κ±ai/π − 1) versus ∆i (i = 1, 2 are for EF1

and EF2, respectively), as shown in Fig. 31 (a). Here,
κ± are the Bloch wave-vectors near the Brillouin zone
edge, and χm & χ

′
m (m = 1, 2, 3) are the susceptibility

components. Also, with increasing incident angle α of
the probe beam E3 from 89.85◦ to 90◦, as shown in
Figs. 29 (c) and (d), there exist a series of forbidden
bands (the region with Re(κ±ai/π− 1) ≈ 0 in Fig. 31
(a), with right side for the TE-polarized EF2 cases
and left side for the TM-polarized EF1 cases, respec-
tively) for such induced periodic medium, which result
from the strong omnidirectional Bragg reflections. It
is obvious that the dipole-mode EF1 and EF2 soli-
ton beams become weaker (as the stop bands start to
disappear from 89.95◦ to 90◦ for the incident angle).
When the band gap completely disappears at 89.975◦

(with no zero values for the real dispersion, as shown
in the far right and far left dispersion curves)), the
residual intensity comes from the FWM signal with-
out the Bragg reflection. In Fig. 31 (b), when the
angle θ2 between the beams E2 and E

′
2 decreases, the

number of spots for the EF2 beam changes from eight
into two (dipole-mode). The energy has been trans-
ferred from those eight spots (at θ2 = 0.5◦) to the
dipole-mode spots (at θ2 = 0.2◦). Such dipole soliton
is trapped jointly in the neighboring photonic fringes.
Since a2 = λ2/θ2 the fringe spacing of EIG2 will be-
come larger versus decreasing θ2.

2. Surface Solitons of FWM in EIL

The formation of 1D dipole-mode solitons with
FWM beams is introduced in section 1. These
composite spatial solitons with orthogonally-oriented
dipole components are stable as they propagate inside
the atomic medium. In this section, we will discuss
the formations of 1D and 2D surface solitons in the
EIGs and EIL. Compared with the surface solitons
created in the photorefractive crystals and other sys-
tems, the ones formed in the atomic medium can be
easily controlled by many experimental parameters,
such as the probe detuning, the pump powers, and the
incident angles of the relevant beams, since the indices
in the generated gratings and lattice can be changed
by altering the periodically-modulated atomic coher-
ence and nonlinearities[12]. We also investigate the

FIG. 32. (a) The ladder-type three-level atomic system
(b) The first spatial beam geometric configuration used in
the experiment for the investigation of 1-D surface soli-
ton. (c) Generation of FWM1 via Bragg scattering of the

probe beam on the EIG1 created by E1 and E
′
1. (d1) The

illustration of the EIL composed of EIG1 and EIG2. (d2)
The lattice state

soliton dynamics under the competition between the
generation of surface solitons due to the nonlinear lo-
calization and the Bragg reflection due to PBG. With
the flexible controls in the experimental parameters,
we can easily explore various parameter spaces and ob-
serve interesting phenomena in forming the 2D surface
solitons. These studies will be useful for understand-
ing the fundamental mechanisms in soliton formation
and dynamics, and can open new ways to control the
diffraction of optical beams and develop new schemes
for spatial optical switching[13], pattern formation[14]

in optical communication and all-optical image pro-
cessing.

The spatial periodic modulation of surface soliton is
originated from the EIL. In Fig. 32 (b), the two strong
pumping beams k1 and k

′
1 (k2 and k

′
2) interfere with

each other to induce a horizontally aligned grating in
X-Z (Y -Z) plane with a period Λ1 = λ1/2 sin(θ1/2)
(Λ2 = λ2/2 sin(θ2/2))[12]. With these gratings, the
incident beam can have intense Bragg reflection. The
generated FWM signals EF1 (TM polarization with
respect to EIG1) and EF2 (TE polarization with re-
spect to EIG2) are the Bragg reflected signals of the
probe beam E3 (launched obliquely into the grat-
ings EIG1 and EIG2), respectively[15]. For instance,
as shown in Fig. 32 (c), the incident probe beam
has an angle α with respect to the tangential di-
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rection of EIG1, which can be decomposed into two
components[16]. One component propagates tangen-
tially to the interface between the EIGs and the uni-
form medium and its propagation characteristics can
be represented by the surface wave propagation con-
stant β. The other component propagates in the
direction normal to EIGs, which can be character-
ized by the Bloch wave vector κ. Similar to the
Snell’s law, the EF1 beam (as the Bragg reflected
probe beam), is symmetric to the incident probe beam
with respect to the normal direction of EIG1, and
therefore it is also the syntheses of the tangential
surface wave component and the normal Bragg re-
flected component. The surface-wave component of
the probe beam propagates along the z

′
direction

in Fig. 32 (c), parallel to the interface between the
EIGs and the uniform medium, while FWM1 prop-
agates along the z axis in Fig. 32 (c). The coordi-
nate’s rotation transformation components between
these two frames are ξ

′
= ξ cos(θi/2)−z sin(θi/2) and

z
′
= ξ sin(θi/2)+ z cos(θi/2), where i = 1 & ξ = x are

for EIG1 and i = 2 & ξ = y for EIG2, respectively.
Since θi is very small, the surface-wave component is
the dominant one in the generated FWM signals EF1

and EF2.
To force the incident probe beam to excite the

surface mode and form the surface soliton, we
should adjust the Bloch wave vector κ to fall into
the forbidden band, so the normal Bragg reflected
component is attenuated. When the laser beam
propagates at the edge of the EIG and homogeneous
medium, the FWM signals can be expressed as:
ES

F1,2(ξ
′
) = Eκ(ξ

′
)exp[i(κξ

′
+ βz)] for ξ

′
> 1 and

ES
F1,2(ξ

′
) = αexp(iβz + qαξ

′
) for ξ

′ ≤ 1, where ξ
′

represents x
′
or y

′
, and ξ

′
= 1 defines the boundary of

the EIG and homogeneous media. Here, in the forbid-
den band, there must exist κ = mπ/Λi + iκ

′
with m

being positive integer, in which the nonzero imaginary
part κ

′
is the attenuation coefficient along the ξ

′
-axis

in the EIGs for the normal Bragg reflected compo-
nent. Another parameter, qα =

√
β2 − [(ωi/c)nα]2

is the attenuation coefficient along the transverse
axis in the homogeneous medium, in which nα is
the refractive index (nα = n1 + n2I with n1 ≈ 1).
Propagation constant β of the surface wave com-
ponent can be obtained by solving the equation
mπ/Λi + iκ

′
= cos−1{Tr[TΛ(β, ∆i)]}/Λi in the for-

bidden band, which is derived by the transfer-matrix
method and Bloch theorem in medium with period-
ically modulated refractive index[17], and TΛ is the

transfer matrix of one period in the EIGs. In the Kerr
medium, the periodic susceptibility can be expressed
by χ(ξ) ≈ χ(1)(ξ) + χ(3)(ξ)|E2|2 sin2(θi/2). For
one period, the transfer matrix can be expressed by
TΛ(∆1, β) =

∏N
j=1 Tj(∆1, β) = [TΛ1(∆1, β)TΛ2(∆1, β)]T ,

TΛ1(∆1, β) = [TΛ11(∆1, β)TΛ12(∆1, β)], and
TΛ2(∆1, β) = [TΛ21(∆1, β)TΛ22(∆1, β)], where Tj

is the transfer matrix of the j-th layer when we divide
the whole period into N layers, and the dependencies
on the frequency (∆1) and propagation constant β
are obvious.

The two EIGs are in different planes, so the inter-
action region between them is small and they can be
considered to be isolated. The experimental results
presented are obtained under such condition. The ex-
perimental configuration can also be changed to have
a second configuration in which EIG1 and EIG2 are
both in the Y -Z plane and the orientations of them
are deviated from Z axis by 22.5◦, anticlockwise and
clockwise respectively, defined as y

′′
and z

′′
. In this

case, the two EIGs have considerable overlapping area
to construct a 2D EIL with a 2D periodic refrac-
tive index due to periodically modulated atomic co-
herence. Specifically, the level splitting due to the
dressing by the strong pump beams can significantly
affect the susceptibility and further modify the refrac-
tive index[18]. At the position where the antinodes of
the standing wave created by fields E1 and E

′
1 come

across that of the standing wave created by E2 and
E
′
2, the naked level |1〉 will be split into three dressed

levels |++〉, |+−〉 and |−〉 after being doubly dressed
by E1 & E

′
1 and E2 & E

′
2, as shown in Fig. 32 (d1),

so the refractive index is strongly modified by these
two field pairs[12]. In contrast, at the position where
the nodes of the two standing waves overlap, level
|1〉 is not dressed and the index will not be modified.
When the antinodes of one standing wave encounter
the nodes of the another standing wave, level |1〉 will
be split into two dressed levels |+〉 and |−〉 and the
index will be modified only by a single field pair. The
spatial periodical distribution of these three cases can
lead to a lattice state as shown in Fig. 32 (d2) and
further distinguished 2D periodic index modulation
as illustrated in Fig. 32 (d1). The sensitivity of such
index modulation to the detuning of the probe field
and powers of the dressing fields leads to the tunabil-
ity for the soliton formation by multi-parameters.

The propagations of FWM1 and FWM2 under ei-
ther 1D or 2D modulations and diffraction can be ex-
pressed by

∂EF1

∂z
− i∇2

T EF1

2kF1
=

ikF1

n1

{
nS1

2 |EF1|2 + 2
[
nX1

2 |E′
1|2[ςµ(z

′′
) + (1− ς)µ(x

′
) + ςnX2

2 |E′
2|2µ(y

′′
)
]}

EF1 (26-1)
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∂EF2

∂z
− i∇2

T EF2

2kF2
=

ikF2

n1

{
nS2

2 |EF2|2 + 2
[
nX3

2 |E′
1|2ςµ(z

′′
) + nX4

2 |E′
2|2[ςµ(y

′′
) + (1− ς)µ(y

′
)]

]}
EF2 (26-2)

where∇2
T is the Laplace operator with respect to the x

and y axes and describes the diffraction. The y′′ and
z′′ axes denote the orientations of EIG1 and EIG2,
respectively. In these equations, µ(ξ) = cos2(πξ/Λi)
for ξ ≥ 1 and µ(ξ) = 1 for ξ < 1 (ξ = x′, y′, y′′, z′′)
represent the periodically modulated refractive index
pattern inside the EIGs (ξ ≥ 1) and the uniform in-
dex outside (ξ < 1) the EIGs (ξ = x′, y′′ for EIG1 and
ξ = y′, z′′ for EIG2), respectively. Surface solitons
can be generated at the interface of these two regions
with a high refractive index contrast. The factor ς = 0
or 1 is introduced to describe the assembling of EIG1
and EIG2 into EIL, i.e. ς = 1 for sufficiently large
overlapping area as in Fig. 32 (d), and tς = 0 when
overlapping area is not sufficiently large as in Fig. 32
(b). With ς = 1 both FWM signals suffer from the
modulations of the lattice with the indices varying
periodically in two directions according to µ(y′′) and
µ(z′′). In Eq. (26-2), n1 is the linear refractive index
at ω1; nS1,2

2 are the self-Kerr coefficients of EF1 and
EF2, and nX1−X4

2 are the cross-Kerr coefficients from
and E1,2 and E

′
1,2 respectively. These Kerr nonlin-

ear coefficients can all be calculated by the general
expression n2 = Reχ(3)/(ε0cn1).

A qualitative analysis of the Eq. (26-2) is available
when the diffraction and SPM terms are neglected,
in which the phase profile distortion of FWM by
the EIL or EIG is considered[19]. This will allow
the linearization of Eq. (26-2) with respect to x
and y, and obtain a set of solutions with phases for
EF1 and EF2 as φF1 = 2kF1{nX1

2 |E′
1|2[ςµ(y′′) +

(1 − ς)µ(x′)] + nX4
2 |E′

2|2ςµ(z′′)}z/n1 and
φF2 = 2kF2{nX3

2 |E′
2|2ςµ(z′′) + nX4

2 |E′
1|2[ςµ(y′′) +

(1 − ς)µ(y)]}z/n1, both of which is 2D (1D) pe-
riodic at ς = 1 (ς = 0). The curvature of such
distorted phase front is periodically alternative
to be positive and negative, so the FWM sig-
nal is 2D or 1D periodically modulated. We
also can obtain the modulation periodic of FWM
signal: FWM1 (FWM2) has period Λx′,y′

F1,F2 =
n1Λ2

1/kF1,F2π|E′
1,2|2nX1,X4

2 z along x′ (y′) axis at

ς = 0, and Λy′′

F1,F2 = n1Λ2
1/kF1,F2π|E′

1|2nX1,X3
2 z and

Λz′′
F1,F2 = n1Λ2

1/kF1,F2π|E′
2|2nX2,X3

2 z along y′′ and z′′

axis at ς = 1.
In Ref. [20], one can find the details of 1D surface

soliton, here we will focus on the 2D surface soliton.
After adjusting the parameters such as frequency de-
tuning, power set at their optimal values, sufficient
intersection area becomes essential for the formation
of the lattice state and EIL illustrated in Figs. 32 (d2)

FIG. 33. (a) The images of the FWM1 signal when EIG1
is rotated by ten discrete angles with EIG2 not rotated
in (a1) and rotated in (a2). (b) The images of FWM1

signal (b1) when the power P1 of the pump beam E
′
1 is

successively set at eight discrete values (6 µW, 8 µW, 10
µW, 12 µW, 14 µW, 16 µW, 18 µW and 20 µW) with
EIG1 rotated and EIG2 not rotated, respectively; (b2) the

images of the FWM1 signal when the power of E
′
2 changes

as that of E
′
1 in (b1) and the power of E

′
1 is fixed at 10

µW, with EIG1 rotated and EIG2 both rotated

and (d1), and the generation of 2D surface solitons
propagating along the corner of this EIL, so the beam
configuration is reconstructed. In this reconstruction,
the orientations EIG1 (EIG2) are anticlockwise (clock-
wise) rotated in the Y -Z plane. We define γ as the an-
gle between the orientations of the two EIGs and the
maximum is 45◦. The images of FWM1 are recorded
at ten discrete positions in the rotation process of
EIG1, as shown in Figs. 33 (a1) and (a2). FWM1
in Fig. 33 (a1) only shows modulation in y′′-direction
due to the small intersection area when EIG2 is not ro-
tated, though the rotation of EIG1 increases the area
on a certain extent. In contrast, in Fig. 33 (a2), there
are periodic modulations of FWM1 in two directions,
which become increasingly significant with increasing
γ, because the intersection area has been gradually
enlarged and the area with lattice state gradually ex-
tends.

Next, the evolution of the FWM1 solitons is inves-
tigated when the pump fields E

′
1 and E

′
2 are changed,

respectively. In Fig. 33 (b1), EIG1 is rotated to have
large γ, while EIG2 is not rotated. Thus, one can
easily see that the FWM signal remains periodically
modulated in y′′-direction. Here, increasing P1 only
has the effect of decreasing the modulation period. In
Fig. 33 (b2), EIG2 is rotated, and therefore the 2D



Lou Lan et al.: Coherent Control of Multi-Wave Mixing in Atomic Media 123

modulation of FWM1 is formed. When the power
of E

′
2 increases, the periodic stripes in one direc-

tion of such 2D modulations become denser. Such
tunability can be well explained by the expression

Λy
′′
2

F1 = n1Λ2
1/kF1π|E′

2|2nX2
2 z in which larger P2 will

lead to a smaller modulation period and it further
verifies that the 2D EIL is composed of two tunable
EIGs with different spatial orientations.

In summary, we have discussed the formation and
dynamics of the 2D surface solitons in FWM signals
in the atomic medium. Such surface solitons propa-
gate along the interface between the uniform medium
and the EIL, which is composed of two EIGs. Such
investigation will be important in understanding the
fundamental mechanisms in soliton formation and dy-
namics. It also open new ways to flexibly control the
diffraction of optical beams and designing new devices
for optical image storage, processing and communica-
tion.

V. QUANTUM CONTROL OF MWM

A. Fluorescence in MWM

Traditional fluorescence is defined as emitted light
by an object which usually has a longer wavelength
than the absorbed radiation. However, in the case
that there are two photons absorbed by one atom,
the emission with wavelength shorter than the pho-
ton absorbed can be obtained. Furthermore, the emit-
ted field may also be of the same wavelength as the
absorbed radiation, termed “resonance fluorescence”.
FWM process is often accompanied by single-photon,
two-photon and three-photon fluorescence processes,
which can be also affected by dressing effect.

1. Two- and Three-Photon Fluorescencesf accompanying
with FWM

This section provides a brief description of two-
photon fluorescence process which is accompanied
with the MWM process. In our theoretical and exper-
imental scheme, both MWM and fluorescence signals
are transmitted in EIT window. Therefore, compared
with resonance fluorescence, the fluorescence process
with MWM has several distinct differences and ad-
vantages. First, extremely narrow fluorescence signals
(about 50 MHz) can be obtained in an open-cycle
atomic system, since the generated fluorescence sig-
nals fall into EIT windows. Such fluorescence signals
with extremely narrow linewidths have not been re-
ported before, either experimentally or theoretically.
This will allow us to investigate the quantum cor-
relation and narrow linewidth laser since the gener-

FIG. 34. The diagrams of (a) two-level, (b) a three-level
V-type, (c) a three-level Λ-type, (d) a three-level Ξ-type,
and (e) four-level Y-type atomic systems, respectively

ated fluorescence signal is of very high in coherence
and monochromaticity. Second, by individually con-
trolling the EIT windows, fluorescence signals can be
clearly separated or superimposed selectively. Third,
the amplitude of the fluorescence signal can be con-
trolled by changing the intensity and frequency of
pumping laser via Dark states.

In order to give a clear physical description of the
fluorescence process, we consider six kinds of atomic
level structures, two-level, three level V-, Λ-, and Ξ-
type, four-level Y- and inverted Y-type atomic sys-
tems, as shown in Fig. 34. First, for two-level sys-
tem (Fig. 34 (a)), the single- and two-photon flu-
orescence signals R1 and R2 will be generated due
to spontaneous emission of photons from |1〉 to |0〉,
which can be described by the Liouville pathways (R1)
ρ
(0)
00

ω1−→ ρ
(1)
10

−ω1−−−→ ρ
(2)
11 and (R2) ρ

(0)
00

ω1−→ ρ
(1)
10

−ω2−−−→
ρ
(2)
00

ω2−→ ρ
(3)
10

−ω1−−−→ ρ
(4)
11 , respectively. Next, for the

three-level V-type system (Fig. 34 (b)), there ex-
ist two single-photon fluorescence signals R1 (from
|1〉 to |0〉) and R2 (from |2〉 to |0〉), and two two-
photon fluorescence signals R3 (from |1〉 to |0〉) and
R4 (from |2〉 to |0〉), which can be described by the
Liouville pathways (R1) ρ

(0)
00

ω1−→ ρ
(1)
10

−ω1−−−→ ρ
(2)
11 , (R2)

ρ
(0)
00

ω2−→ ρ
(1)
20

−ω2−−−→ ρ
(2)
22 , (R3) ρ

(0)
00

ω1−→ ρ
(1)
10

−ω2−−−→
ρ
(2)
12

ω2−→ ρ
(3)
10

−ω1−−−→ ρ
(4)
11 and (R4) ρ

(0)
00

ω2−→ ρ
(1)
20

−ω1−−−→
ρ
(2)
21

ω1−→ ρ
(3)
20

−ω2−−−→ ρ
(4)
22 . Then, for the three-level Λ-

type system (Fig. 34 (c)), the decay of photons from
|1〉 to |0〉 will generate single- and two-photon fluores-
cence signals R1 and R2, which can be described via
the Liouville pathways (R1) ρ

(0)
00

ω1−→ ρ
(1)
10

−ω1−−−→ ρ
(2)
11

and (R2) ρ
(0)
00

ω1−→ ρ
(1)
10

−ω2−−−→ ρ
(2)
20

ω2−→ ρ
(3)
10

−ω1−−−→ ρ
(4)
11 ,

respectively. While for the Ξ-type system (Fig. 34
(d)), there is only one single-photon and one two-
photon fluorescence signals R1 and R2, which can be



124 Lou Lan et al.: Coherent Control of Multi-Wave Mixing in Atomic Media

represented by the Liouville pathways (R1) ρ
(0)
00

ω1−→
ρ
(1)
10

−ω1−−−→ ρ
(2)
11 (spontaneous emission from |1〉 to |0〉)

and (R2) ρ
(0)
00

ω1−→ ρ
(1)
10

ω2−→ ρ
(2)
20

−ω1−−−→ ρ
(3)
21

−ω2−−−→ ρ
(4)
22

(spontaneous emission from |2〉 to |1〉), respectively.
Further, for the four-level Y-type system (Fig. 34 (e)),
there is additional two-photon fluorescence signal R3

compared to the three-level Ξ-type system (Fig. 34

(d)), which is the spontaneous emission form |3〉 to
|1〉)，and can be expressed by the Liouville pathway
(R3) ρ

(0)
00

ω1−→ ρ
(1)
10

ω3−→ ρ
(2)
30

−ω1−−−→ ρ
(3)
31

−ω3−−−→ ρ
(4)
33 . Here,

we only give the corresponding doubly dressed den-
sity matrix elements for the four-level Y-type system
as follows:

ρ
(2)
11 = −|G1|2/[Γ11(d1 + |G2|2/d2 + |G3|2/d3)] (27)

ρ
(4)
22 = |G1|2|G2|2/[Γ22d1d4(d2 + |G2|2/(d1 + |G3|2/d3))] (28)

ρ
(4)
33 = |G1|2|G3|2/[Γ33d1d5(d3 + |G3|2/(d1 + |G2|2/d2))] (29)

FIG. 35. Measured probe transmission (upper curves),
MWM (middle curves) and fluorescence (bottom curves)
((a) and (c)) versus ∆1, (b) versus ∆2 at discrete ∆1 in
four-level Y-type ((a) and (b)) and inverted Y-type (c)
atomic system

where d1 = Γ10 + i∆1, d2 = Γ20 + i(∆1 + ∆2), d3 =
Γ30 + i(∆1 +∆2), d4 = Γ21 + i∆2 and d5 = Γ31 + i∆3.
Finally, the four-level inverted Y-type system (Fig. 34
(f)), will also generate an additional two-photon flu-
orescence signal R3 compared with Ξ-type system,
which can be presented as (R3) ρ

(0)
00

ω1−→ ρ
(1)
10

−ω3−−−→
ρ
(2)
30

ω3−→ ρ
(3)
10

−ω1−−−→ ρ
(4)
11 (spontaneous emission from

|1〉 to |0〉).
With ∆1 scanned, the probe transmission, FWM

and fluorescence signals (Fig. 35 (a)) in Y-type sys-
tem are obtained. In the fluorescence signals, the big
background represents the single-photon fluorescence
R1 (ρ(2)

11 ), and the other two small sharp peaks on
it are the two-photon fluorescence R2 (ρ(4)

22 ) and R3

(ρ(4)
33 ). And Fig. 35 (b) represents the measured sig-

nals by scanning ∆2 at discrete ∆1 . Similarly, for the
fluorescence signal, the profile expresses the dressed
R1 (ρ(2)

11 ) by E3, the dip lower than the corresponding
baseline represents further dressed R1 (ρ(2)

11 ) by E2,

and the peak within the dip is the two-photon fluo-
rescence signal R2 (ρ(4)

22 ). Furthermore, Fig. 35 (c)
represents the probe transmission, SWM and fluores-
cence versus ∆1 in inverted Y-type system. Same as
before, the big background represents the fluorescence
R1 and R3 (ρ(2)

11 and ρ
(4)
11 ), and the small sharp peak

on it is the two-photon fluorescence R2 (ρ(4)
22 ).

The difference between two-photon fluorescence and
the FWM signals can be seen from Liouville pathway.
First, the FWM signal is caused by the atomic coher-
ence effect while the fluorescence signal is induced by
spontaneous decay of photons pumped to the upper
levels. Then, the direction of FWM the signal is de-
termined due to the limitations of the phase-matching
conditions but the fluorescence signal is not. Third,
FWM process follows the closed-loop path while the
fluorescence process does not. The extremely nar-
row fluorescence signal with very high coherence and
monochromaticity introduced here can be used for the
quantum correlation and narrow linewidth laser.

2. Opening Fluorescence and FWM via Dual EIT
Windows

In this Section, we compare the probe transmis-
sion, FWM and fluorescence signals under dressing
effects. The ultra-narrow two-photon fluorescence sig-
nal, which is sheared twice by EIT window, is ob-
tained in ladder or Y-type atomic system. Such flu-
orescence with very high coherence and monochro-
maticity can be potentially applied in metrology, long-
distance quantum communication and quantum cor-
relation. Also, we investigate the interaction effect
between two ladder subsystems on the measured sig-
nals. Moreover, the amplitude of the signals can be
effectively controlled by the incident beam intensity
and frequency detuning.
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FIG. 36. (a) Relevant 85Rb four-level Y-type atomic sys-
tem. (b) Spatial beam geometry used in the experiment

Three types of fluorescence due to spontaneous
emission are detected that the decay of photons from
|1〉 to |0〉 will generate single-photon fluorescence sig-
nal R0 (wavelength 780 nm), and the decay of photons
from |2〉 and |3〉 to |1〉 will generate two-photon fluo-
rescence signals R1 and R2 (wavelength 776 nm), as
shown in Fig. 36 (a). Compared with FWM, the flu-
orescence signals are non-directional and detected by
another photodiode. The two-photon fluorescence sig-
nals can also fall into the EIT windows and form the
Doppler-free sharp peaks.

As described in the Section 1, for the fluorescence
signals, the single-photon fluorescence R0 is described

by ρ
(0)
00

E1−−→ ρ
(1)
10

(E1)
∗

−−−→ ρ
(2)
11 . By solving the cou-

pled density-matrix equations, the expression of the
density-matrix element ρ

(2)
11 can be obtained as ρ

(2)
11 =

−|G1|2/(d1Γ11), the amplitude square of which is pro-
portional to the intensity of R0. When the beams
E2 and E3 are turned on, the fluorescence process
R0 can be doubly dressed, and the expression of ρ

(2)
11

should be modified as ρ
(2)
11DD = −|G1|2/[Γ11(d1 +

|G2|2/d2 + |G3|2/d3)]. For two-photon fluorescence

R1, via Liouville pathway ρ
(0)
00

E1−−→ ρ
(1)
10

E2−−→ ρ
(2)
20

(E1)
∗

−−−→
ρ
(3)
21

(E2)
∗

−−−→ ρ
(4)
22 we can obtain the density-matrix

element ρ
(4)
22 as ρ

(4)
22 = |G1|2|G2|2/(Γ22d1d2d4), the

amplitude square of which is proportional to the
intensity of R1. Considering the self-dressing ef-
fect of E2 and E

′
2, the expression of ρ

(4)
22 should

be modified as ρ
(4)
22SD = |G1|2|G2|2/[Γ22d1d4(d2 +

|G2|2/d1)]. When E3 the beam is turned on,
its dressing effect should be additionally consid-
ered and the doubly dressed fluorescence process
R1 is given as ρ

(4)
22DD = |G1|2|G2|2/[Γ22d1d4(d2 +

|G2|2/(d1 + |G3|2/d3))]. Correspondingly, the fluo-
rescence signal R2 is related with the density-matrix
element ρ

(4)
33 = |G1|2|G3|2/(Γ33d1d3d5). Similarly

with R1, the singly dressed R2 process is given as
ρ
(4)
33SD = |G1|2|G3|2/[Γ33d1d5(d3 + |G3|2/d1)]. and

doubly dressed R2 process is given as ρ
(4)
33DD =

FIG. 37. Measured probe transmission (the upper curves),
FWM (the middle curves) and fluorescence (the bottom
curves) versus ∆1. (a) P1 = 1 mW and ∆2 set as (a1)
400 MHz, (a2) 250 MHz, (a3) 0 and (a4) −250 MHz, re-
spectively, with ∆3 = 0; (b) P1 = 6 mW and ∆3 set as
(b1) 250 MHz, (b2) 100 MHz, (b3) −100 MHz and (b4)

−250 MHz, respectively, with ∆2 = −100 MHz and E
′
3

blocked. The other experimental parameters are P2 = 12

mW, P
′
2 = 8 mW, P3 = 22 mW, P

′
3 = 16 mW

|G1|2|G3|2/[Γ33d1d5(d3 + |G3|2/(d1 + |G2|2/d2))].
Figure 37 presents the measured FWM and fluores-

cence signals via the EIT windows versus ∆1. First,
with all five beams on and P1 = 1 mW, the measured
curves under different ∆2 are depicted in Figs. 37
(a1)∼(a4). In the probe transmission, two EIT win-
dows arise at ∆1 = −∆2 and ∆1 = −∆3 (labeled
as P1 and P2) within the Doppler absorption back-
ground. The FWM signals F1 and F2 fall into the
two EIT windows respectively. As ∆2 changes, the
EIT window P1 and FWM signal F1 shift from left
to right, and overlap with the fixed EIT window P2
and FWM signal F2 at ∆2 = ∆3 = 0 (Fig. 37 (a3)).
For the fluorescence signals, the big background curve
represents the single-photon fluorescence R0 (ρ(2)

11 ).
The other two small sharp peaks on it are the two-
photon fluorescence R1 (ρ(4)

22 ) and R2 (ρ(4)
33 ) falling into

the EIT windows. The intensity of fluorescence R1
reaches its maximum at the resonant point (∆2 = 0,
Fig. 37 (a3)) and decreases gradually as ∆2 is set far-
ther from resonance (from Fig. 37 (a3) to 2(a1)), due
to the effect of single-photon term d1 and d4 in ρ

(4)
22 .

Next, when P1 increases to 6 mW, the dressed sig-
nals are shown in Figs. 37 (b1)∼(b4) where E

′
3 is

blocked. Here, the FWM signal F2 disappears due
to the absence of E

′
3 and the fixed FWM signal F1

shows AT splitting from the self-dressing effect of
E2 (E

′
2), denoting by the dressing term |G2|2/d2 in
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ρ
(3)
F1DD. When the EIT windows P1 and P2 overlap

in Fig. 37 (b3), F1 is suppressed obviously due to the
dressing effect of E3 denoting by the dressing term
|G3|2/d3. In the fluorescence signals, two suppres-
sion dips lower than the background curve containing
sharp peaks R1 and R2 can be observed. These sup-
pression dips are induced by the dressing effects of
E2 (E

′
2) and E3 individually, described by the terms

|G2|2/d2 and |G3|2/d3 in ρ
(2)
11DD. Such dressing ef-

fects can be modulated by E1 according to ρ
(2)
11DD,

therefore when P1 is small (Fig. 37 (a)) the dips are
invisible. When ∆3 moved far from resonance, the
dip at ∆1 = −∆3 gradually becomes shallower, corre-
sponding with the weakened EIT. On the other hand,
the R2 peak gets slightly higher with ∆3 increasing
(from Fig. 37 (b2) to 2(b1)), which is entirely differ-
ent from the case in Fig. 37 (a) where R1 peak weak-
ens with ∆2 increasing. This is for the reason that as
the power of E1 increases, its dressing effect on the
two-photon term d3 in ρ

(4)
33 should be considered, ex-

pressed as d3+|G1|2/d3. Hence the fluorescence peaks
R1 and R2 are suppressed around the resonant point.
More importantly, the fluorescence peak R2 within the
dip can be seen with ultra-narrow linewidth (about 10
MHz), which is much narrower than the EIT windows
(about 50 MHz). Such high-resolution fluorescence is
generated because it has been sheared twice by the
EIT window P2. First, due to the two-photon dress-
ing term |G3|2/d3, the single-photon term d1 of ρ

(2)
11

is clipped out, resulting in the suppression dip on R0,
which is of the same width as the EIT window P2.
Further, such clipped single-photon term, as a factor
of two-photon term d2, participates in the process of
two-photon fluorescence R2 (ρ(4)

33 ) which also stays in
the EIT window P2. Therefore, the fluorescence is
sheared for the second time to an ultra-narrow peak.
Similarly, in the |0〉 − |1〉 − |2〉 subsystem the fluores-
cence R1 can be also sheared twice by the EIT window
P1 and therefore with ultra-narrow linewidth.

In the following, we observe the dressing effects and
the interplay between two ladder subsystems by scan-
ning ∆2. When E1, E2 and E

′
2 are turned on, we

first study the singly dressed signals in |0〉 − |1〉 − |2〉
subsystem, as depicted in Figs. 38 (a1)∼3(a3) with
different ∆1. In the probe transmission signals, the
heights of baselines (horizontal background) represent
the Doppler absorption background at correspond-
ing ∆1. EIT peaks higher than baselines appear at
∆1 +∆2 = 0, EIA dips lower than baselines satisfying
∆1 + ∆2 = |G2|2/∆1 can be observed at large de-
tuning (Figs. 38 (a1) and (a3)). The FWM signal F1
with double-peak structure can be observed in Fig. 38
(a2) due to the synthesis of the self-dressing effect
and the two-photon emission feature. Such double-
peak structure becomes unobvious in Figs. 38 (a1) and

FIG. 38. Measured probe transmission, FWM and fluo-

rescence versus ∆2 with (a) E3 and E
′
3 blocked and ∆1

set as (a1) −350 MHz, (a2) 0 MHz and (a3) 350 MHz; (b)

E
′
3 blocked and ∆3 set as (b1) −50 MHz, (b2) 0 MHz and

(b3) 50 MHz with fixed ∆1 = 0. The other parameters

are P1 = 4 mW, P2 = 14 mW, P
′
2 = 7 mW, P3 = 25 mW.

The calculations of fluorescence are presented below the
measured curves. Especially, the dash lines represent the
calculated R0 and the dash-dot lines represent the calcu-
lated R1

(a3), since the dressing effect weakens at the large fre-
quency detuning. For the detected fluorescence signal,
the baselines with suppression dips represent fluores-
cence R0, and the peaks within the dips are fluores-
cence R1. With ∆1 set far from resonance, the dip
gradually becomes shallower, and eventually almost
invisible at large detuning (Figs. 38 (a1) and (a3)), as
corresponds to the weakening process of EIT. On the
contrary, the peak gets stronger with ∆1 increasing,
for R1 is suppressed around the resonant point accord-
ing to the dressed term d2 + |G2|2/d1 in ρ

(4)
22SD. More-

over, the suppression dips just fall into the EIT win-
dows satisfying ∆1 + ∆2 = 0, and fluorescence peaks
at large detuning are in alignment with EIA satisfy-
ing ∆1 +∆2 = |G2|2/∆1. In order to demonstrate the
phenomena more clearly, we present the correspond-
ing calculations of fluorescence signals below the ex-
perimental curves. Especially, the calculated R0 (the
dash lines) and R1 (the dash-dot lines) are displayed
separately. Such theoretical calculations confirm our
experimental analysis stated above.

When E3 is also turned on, the |0〉 − |1〉 − |2〉 and
|0〉 − |1〉 − |3〉 subsystems will interplay with each
other, resulting in some interesting phenomena as
shown in Figs. 38 (b1)∼(b3). In the probe trans-
mission, the profile of baselines reveals the EIT in-
duced by E3 at ∆3 = −∆1 = 0 and the peaks over
each baseline are EIT induced by E2 (E

′
2). It is ob-

vious that the EIT induced by E2 (E
′
2) is smaller at

∆3 = 0 (Fig. 38 (b2)) than ∆3 is detuned (Fig. 38 (b1)
and (b3)). This is the result of the strong cascade-
dressing interaction between E2 (E

′
2) and E3 near

∆1 = 0 according to the doubly dressed element
ρ
(1)
10DD = iG1/(d1 + |G2|2/d2 + |G3|2/d3). The FWM

signal F1 shows double-peak structure induced by E2
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(E
′
2), and is additionally suppressed by external dress-

ing field E3 when ∆3 = −∆1 (Fig. 38 (b2)). The
fluorescence R0 is also suppressed by E3 as depicted
by the lower fluorescence baseline in Fig. 38 (b2), in
addition to suppression effect of E2(E

′
2). Correspond-

ing to the EIT window, the suppression dip induced
by E2(E

′
2) is shallower at ∆3 = 0 (Fig. 38 (b2))

than ∆3 is detuned (Figs. 38 (b1) and (b3)). On
the other hand, the fluorescence peak R1 in Fig. 38
(b2) is slightly stronger than the ones in Figs. 38 (b1)
and (b3), resulting from the enhancement effect of E3

around ∆3 = −∆1 by considering the nest-dressing
term |G2|2/(d1+|G3|2/d3) in ρ

(4)
22DD. The correspond-

ing calculations of fluorescence are also presented in
Fig. 38 (b), which are in agreement with the experi-
mental results.

3. Phase Control of FWM and Fluorescence Channels

As described in the previous section, the fluores-
cence and the FWM signals can be effectively modu-
lated by dressed field frequency detuning and power.
Most recently, we found a new modulation method in
which dark state and bright state can be affected by
the relative phase of dressing field. In this section,
we demonstrate the switch between bright and dark
states by controlling the relative phase in a four-level
85Rb atomic vapor, which can be realized in experi-
ment by changing the angle α (For special illustration
of α, please see Ref. [1]) between incident field and
the cell of atomic vapor. In the relative phase con-
trol, the enhancement and suppression conditions of
the measured signals are significantly modified, and
therefore we can effectively modulate the transmitted
probe, FWM and fluorescence signals. The results of
this section are based on Ref. [1].

As described in section I, the single-photon flu-
orescence signal R0 can be obtained as ρ

(2)
11 =

−|G1|2(Γ11d1) via ρ
(0)
00

ω1−→ ρ
(1)
10

−ω1−−−→ ρ
(2)
11 . Such

expression can be doubly dressed as ρ
(2)
11DD =

−|G1|2/[Γ11(d1 + |G3|2/d3 + |G2|2ei∆Φ/d2)]. The two-
photon fluorescence signal R2 can be obtained as
ρ
(4)
22 = |G1|2|G2|2/Γ22d1d2d4 via ρ

(0)
00

ω1−→ ρ
(1)
10

ω2−→
ρ
(2)
20

−ω1−−−→ ρ
(3)
21

−ω2−−−→ ρ
(4)
22 , which can be modified as

ρ
(4)
22DD = |G1|2|G2|2/[Γ22d1d4(d2 + |G2|2ei∆Φ/(d1 +
|G3|2/d3))] with self- and external- dressing effects.
The other two-photon fluorescence signal R1 is simi-
lar to R2. According to the expressions above, it is
obvious that the dressing effect can be modulated by
manipulating the relative phase ∆Φ, and so the switch
between bright and dark states could be achieved. In
experiment, ∆Φ is controlled by changing the angle α
(the relationship between α and ∆Φ can be found in
Ref. [1]).

FIG. 39. (a) Transmitted probe (top curves), FWM (mid-
dle curves) and fluorescence (bottom curves) signals ver-

sus ∆1 with E3 and E
′
3 blocked and ∆2 = 100 MHz for

different ∆Φ: (a1) 0, (a2) −π/2, (a3) −π. Powers of par-
ticipated laser beams are P1 = 7 mW, P2 = 17 mW and

P
′
2 = 8 mW. (b1)- (b3) Calculations of the transmitted

probe signals corresponding to the results in (a1)-(a3)[70]

When blocking E3 and E
′
3, we first show the evolu-

tions of the transmitted probe, FWM and fluorescence
signals under three typical values of ∆Φ, as shown in
Figs. 42(a1)sim(a3). Under the normal configuration
where α = 0, the relative phase ∆Φ = 0 corresponds
to the factor ei∆Φ = 1. Therefore, the dressing terms
will degenerate to normal ones which have been inves-
tigated in Ref. [70].

The signals under such normal condition is depicted
in Fig. 39 (a1), from which we can see an EIT win-
dow appearing at ∆1 = −∆2 in the transmitted probe
signal, relative lower FWM signal EF2 falling into
this EIT window, and the two-photon fluorescence
signal R2 revealing as a sharp peak on the big back-
ground of single-photon fluorescence signal R0, also
falling within the EIT window. With ∆Φ changed to
−π/2 (Fig. 39 (a2)), the EIT window in the trans-
mitted probe signal almost disappears and a small
EIA dip arises. When ∆Φ further changes to −π

(Fig. 39 (a3)), a strong EIA dip appears. Such switch
between dark (EIT) and bright (EIA) states is for
the reason that the dressing effect gets modulated as
∆Φ is altered, denoting by the dressing term with a
phase factor |G2|2ei∆Φ/d2 in ρ

(1)
10SD. To illustrate such

phase controlled switch more clearly, we present the
corresponding calculations of the transmitted probe
signal in Fig. 39 (b). For ∆Φ = 0, the dressing
term |G2|2ei∆Φ/d2 behaves positive (satisfying sup-
pression condition) and normal dark (EIT) state ap-
pears (Fig. 39(b1)); for ∆Φ = −π, the dressing term
behaves negative (satisfying enhancement condition)
and so the dark (EIT) state switches to bright (EIA)
state (Fig. 39 (b3)); for ∆Φ = −π/2, the transi-
tional partial EIT/EIA could be seen (Fig. 39 (b2)).
This dark/bright state switch could result in the mod-
ulation of FWM and fluorescence signals. For the
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FWM signal EF2, it gets increased when ∆Φ = −π/2
(Fig. 39 (a2)) compared with that when ∆Φ = 0
(Fig. 39 (a1)), since the arising enhancement dress-
ing effect of E2 (E

′
2); and gets decreased again when

∆Φ = −π, due to strong absorption. For the two-
photon fluorescence signal (in corresponding to EIA),
its intensity could be observed increasing straightly
from Fig. 39 (a1) to 39 (a3).

In summary, we have discussed the phase control
of the switch between bright and dark states in the
FWM and fluorescence channels in atomic vapors.
Pure dark state can be switched to pure bright state
by controlling the relative phase from 0 to −π. Such
phase controlled switch could have potential applica-
tions in optical communication and quantum informa-
tion processing when utilized in solid material such as
Pr-doped YSO crystals.

B. MWM Process in Ring Optical Cavity

In this section, we consider MWM process in the
ring resonator cavity. First, a brief discussion of the
relation between atom-cavity coupling strength and
cavity mode splitting, and how the intensities of in-
put and output are effected by atom-cavity coupling
strength is given. Next, noise squeezing with non-
linear media in the ring cavity is studied. As an im-
portant entanglement light source, squeezed light field
with FWM process will be also briefly discussed.

1. The Competition between VRS and OB of MWM in
Ring Cavity

Vacuum Rabi splitting (VRS) has been reported
when single two-level atom and N two-level atoms
are strongly coupled with cavity mode. The frequency
distance of the VRS are 2g and 2G in above two atom-
cavity systems, where g and G = g

√
N are single-

and multi-atom coupling strength, respectively. The
coherently prepared atoms-cavity system will also re-
sult in the intra-cavity EIT results, optical bistability
(OB) and multi-stability behavior, which can deduce
close contact between VRS and OB behavior.

In the following, we will present investigation of the
relationship between the VRS and OB of the gener-
ated MWM cavity mode and achieve the goal to con-
trol VRS and OB simultaneously through the coherent
control of dark and bright states and get the inclined
VRS.

As shown in Fig. 40, the coupled atom-cavity sys-
tem consists of rubidium atoms confined in the four-
mirror-formed ring cavity, in which only the gener-
ated FWM (SWM) signal can form the cavity mode.
Figure 41 gives the transmission spectra of FWM

FIG. 40. (a) A scheme of a ring cavity containing the
four-level atoms. (b) Scheme of four-level atomic system

FIG. 41. (a1)-(a4) Solid curves are transmission spectra
of the generated FWM cavity mode with N increasing.
Dashed curves are the transmission spectra of empty cav-
ity. The illustrations (a2′)-(a4′) FWM cavity mode trans-
missions in smaller regions corresponding to (a2)-(a4)

(E1,E2,E
′
2) cavity mode, containing splitting posi-

tions and height of the multi-mode. For empty cavity,
the cavity transmission spectra has Lorenzian shape
and equal mode spacing (free spectral range ∆FSR),
shown as the dashed curves in Fig. 41. For the coupled
atom-cavity system, not only the zero-order longitu-
dinal mode is split with symmetrical center ∆1 = 0
(Fig. 41 (a1)), but also high-order modes are split by
the cavity field when increasing the coupling strength
g
√

N to near or larger than ∆FSR, as the solid curves
shown in Figs. 41 (a2)sim(a4).

Next, the input-output intensity relationship under
steady-state condition is shown in Fig. 42, which dis-
plays OB behavior of the transmitted FWM cavity
mode influenced by dark state. In detail, Fig. 42 (a)
illustrates the output intensity of FWM cavity mode
versus probe input intensity (Ii) and detuning ∆1,
which represents the modulation of VRS in frequency
domain and input-output relationship (OB behavior)
simultaneously. With Ii increased, the spectra of
the transmitted FWM cavity mode expanded rapidly
when ∆1 is scanned, as shown in Fig. 42 (b). Figure
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FIG. 42. The theoretically calculated input-output inten-
sity relationship of the system. (a) FWM transmission
output changes with both probe detuning and probe in-
put intensity; (b) FWM transmission output with probe
detuning at different probe input intensity; (c) OB at dif-
ferent probe detuning; (d) probe input intensity versus
probe detuning with the dots of up branch standing for
the right OB threshold of the OPA FWM process and
dots of down branch standing for the left one

42 (c) obviously shows OB hysteresis cycle and the
threshold of the optical parametric amplifier (OPA)
FWM process, and reveals that the increased |∆1|
can result in a significant change of the OB behav-
ior with the increasing of right OB threshold value.
Finally, Fig. 42 (d) displays the OB threshold values
at different ∆1, in which the left OB threshold value
shifts slowly while the right one shifts sharply. More-
over, Fig. 42 (d) directly predicts there is no OB at
or close to the position of dark state (∆1/Γ20 = 0),
which results from disappeared linear dispersion at
∆1/Γ20 = 0 by the interference between two possible
absorption channels |0〉 → |±〉 induced by g2N .

We have discussed the control of the multi-dressed
VRS and OB behavior of transmitted cavity MWM
signal. We find that the VRS results from the atom-
cavity collective effect induced by high atom density
while the OB behavior results from the sufficiently
strong feedback effect.

2. Squeezed Noise Power with MWM in Cavity

The quantum correlations have been revealed in the
output and idler signals from type-I and type-II[3,4]

OPA inside an optical cavity, which have attracted
increasing interests recently. Moreover, the FWM
and SWM processes, which are assisted by the EIT
in multi-level atomic systems, are efficient sources for
squeezed radiation and correlated photons. Recent ex-

periments have demonstrated the slowing down[5∼7],
storage and retrieval[8,9] of squeezed states of light
through EIT in multi-level atomic systems[10∼12],
which are important to implement quantum network
protocol[13,14].

In this section, we theoretically investigate the
quantum correlations (noise power) of the generated
FWM and SWM signals inside an optical cavity, in
which the generated FWM signal can be considered as
the input field to participate in SWM nonlinear pro-
cess, and vice versa. These processes can be expressed
with interaction Hamiltonian Hint = i~κâ†Fâ†S + c.c.,
where κ = χ(3)E2

2 + χ(5)E2
2E2

3 is the nonlinear cou-
pling coefficient proportional to the susceptibilities
(χ(3) and χ(5)) and the amplitudes (E2 and E3) of the
other two intensive coherent fields, âF and âS are an-
nihilation operators of the generated FWM and SWM
fields. For random annihilation operator, it can be de-
scribed with amplitude x̂ and phase ŷ as quadrature
components â = (x̂ + iŷ)/2, in which x̂ and ŷ satisfy
the canonical commutation relation [x̂, ŷ] = 2i.

The equations of motion for the two cavity modes
(âF and âS) can be obtained by solving the Langevin
equation:

dâF

dt
= −i(∆− ckF

n0F
n1F)âF − (γ + γc)âF + κâ†S

+
√

2γâin
F +

√
2γcĉF (30)

dâS

dt
= −i(∆− ckS

n0S
n1S)âS − (γ + γc)âS + κâ†F

+
√

2γâin
S +

√
2γcĉS (31)

where âin
F (âin

S ) and âF (âS) represent input and in-
tracavity FWM (SWM) mode, ĉF (ĉS) is the vac-
uum mode coupled into the FWM (SWM) mode, ∆
is cavity detuning, γ represents the same decay rate
of FWM (SWM) signal, γc is the other losses in cav-
ity. n0F (n0S) and n1F (n1F) are the linear refractive
index at ωF (ωS) of FWM (SWM) signal in vacuum
and medium, respectively. In our energy level system,
kF = kS = ω1n0/c with ωF = ωS = ω1 and n0F =

n0S = n0 and n1F = n1S =
√

1 + Reχ(1)
F(S), where the

linear susceptibility is given by χ
(1)
F(S) = Dρ

(1)
10F(S) with

D = Nµ2
F(S)/(~ε0GF(S)). µF(S) is the dipole matrix el-

ement between the states coupled by EF(ES). Here,
we can control the quantum correlations through the
control of dark and bright states introduced from n1F

(n1S).
As shown by the dashed line in Fig. 43, when the

other coherent fields are blocked, there are no gen-
erated FWM and SWM processes, so the quantum
correlations of the FWM and SWM output modes
correspond to the shot-noise limit (SNL). However,
when the coherent fields are injected into the cav-
ity, the noise power spectra of the quantum correla-
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FIG. 43. The noise power spectra of the quantum cor-
relations of the quadrature versus ∆. (a) for amplitude
correlation and phase anticorrelation. (b) for amplitude
anticorrelation and phase correlation

tion of the quadrature of the FWM and SWM output
fields are observed shown as the solid lines in Fig. 43,
which show that the amplitude correlation and the
phase anticorrelation become more noisy (Fig. 43 (a)),
while the degrees of the amplitude anticorrelation and
phase correlation increase. These phenomena satisfy
the Heisenberg uncertainty relation.

3. Generation of Three-Mode Continuous-Variable
Entanglement with MWM

Quantum entanglement attracts great interests in
recent years since it is the central resource for the
applications in quantum communication and compu-
tation. Bipartite continuous-variable (CV) entangle-
ment was experimentally obtained by Ou et al.[15∼17]

and multipartite entangled state was also produced
by using one single-mode squeezed state and linear
optics[18∼20]. In this section, we will consider the
quantum nature of the pump in above-threshold OPA.

Here, we consider two beams, a pump field (âp) with
frequency ωp and a probe field (â1) (considered as a
weak injected field) with frequency ω1, entering into
the optical cavity, shown in Fig. 41. The Stokes (âS)
and anti-Stokes (âAS) fields with frequencies ωS and
ωAS can be generated simultaneously by the third-
order nonlinear process. To produce a Stokes pho-
ton and an anti-Stokes photon, a pump photon and a
probe photon must annihilate. For this scheme, the
Hamiltonian of the free modes in the optical cavity can
be written as H1 = ~ωpâ†pâp + ~ω1â

†
1â1 + ~ωSâ†SâS +

~ωASâ†ASâAS, and the interaction Hamiltonian in this
third-order nonlinear process can be written as H2 =
i~κ(âpâ1â

†
Sâ†AS − â†pâ†1âSâAS), where κ is the effective

coupling constant proportional to the third-order non-
linear susceptibility (χ(3)). Moreover, the Hamilto-
nian for the external inputs of the pump and probe
fields is given by H3 = i~(εpâ†p−ε∗pâp)+i~(ε1â†1−ε∗1â1),
where εp and ε1 are the classical pump and probe
field amplitudes. The losses of these modes in cav-
ity are given by Liρ̂ = γi(2âiρ̂â†i − â†i âiρ̂ − ρ̂â†i âi)

FIG. 44. (a) The diatomic systems consisting of 3×3. (b)
The energy level shift curves for different symmetries of
70s-70s (dashed lines), 70p-70p (dotted lines) and 69d-69d
(solid lines) of rubidium

(i = p, 1,S,AS), where γi is the damping constant for
these cavity modes. Based on the above equations,
one can investigate the entanglement characteristics
of our scheme. Meanwhile, we can also introduce the
effect of dark state to control the entanglement be-
tween these cavity modes.

We have considered a scheme to directly produce
bright three color CV entanglement by OPA FWM
process above-threshold. In our scheme, three color
entangled beams can be produced χ(3) nonlinear pro-
cess, in which the nonlinear interaction and conversion
efficiency can be enhanced through dark state.

C. MWM with Rydberg Blockade

With the development of modern laser cooling and
trapping techniques, the so-called ultra-cold Ryd-
berg gases and plasmas have been experimentally
created, in which the atomic or plasmic density is
very high and the Rydberg interaction becomes very
strong[21∼24], which attracts more and more atten-
tion due to their wide range of applications, such
as quantum computing and scalable quantum infor-
mation processing[24,25]. Among such applications, it
has been proposed to realize the quantum logic gates
by employing the sensitivity of the highly excited
state energy to the interaction between neigh boring
Rydberg atoms[26,27]. Also, the phenomena related
to atomic coherence, such as coherent population
trapping[28], stimulated Raman adiabatic passage[29]

have been demonstrated in Rydberg atomic assemble.
Such progresses give the possibility of controlling the
dressed MWM process by the Rydberg blockade.

It is well known that the probe transmission, and
enhancement and suppression of FWM signal can be
controlled by the dressing effect of light field which
modifies the unperturbed levels significantly[2,30,31]

and depends on the detuning of dressing field strongly.
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FIG. 45. (a) The energy levels of a quadratomic system in atom states; µ1 is the dipole matrix element between |40s〉
and |40p〉. The right panel illustrates the corresponding energy levels in pair sates, in which ∆ is the energy gap between
|40s40s〉 and |40p40p〉. The eigen-frequencies of the two levels E+(R) (the upper curve) and E−(R) (the lower curve)
versus ε (R fixed) with both the primary and secondary Rydberg blockades being considered

As the Rydberg blockade could shift energy levels, it
can modulate the probe transmission and FWM signal
via the modified dressing field detuning. Our work is
focused on the MWM process under the modulation
of both the dressing effect and Rydberg blockade.

In the follwing, we will introduce that the principle
of how to control the probe transmission and MWM
processes by the interaction between the dressing ef-
fect and primary blockad (or between the dressing ef-
fect and secondary blockade).

For two atoms with Rydberg levels, there exists
considerable interaction between them, and there-
fore they constitute a diatomic system, in which the
atomic coherence and FWM can occur. For two sin-
gle atoms with the three-level subsystem (|0〉 → |1〉 →
|2〉), 3×3=9 energy levels will be generated in the cor-
responding diatomic system, as shown in Fig. 44 (a).
Due to the long-range interaction potential between
Rydberg atoms with high principal quantum number
n, there will be an energy level shift from the unper-
turbed energy level. Such interaction-induced energy
shift is called as blockade effect. In Fig. 45 (b), the
energy level shifts around n = 70 in Rubidium are
displayed. The inter-nuclear distance R can be exper-
imentally controlled by changing the atomic intensity,
i.e., the cooling conditions in magneto-optical trap in
ultra-cold gas or the temperature in hot atom vapor,
and such level shift can effectively influence the dress-
ing effect and therefore the MWM process.

Furthermore, if the Rydberg energy level of a di-
atomic system has strong probability of dipole tran-
siting to that of another diatomic system, the per-
turbation will make the eigen-frequency shift again,
as shown in Fig. 45 (a), in which ∆ is the energy
gap between the levels without transition perturba-
tion. We call this effect as the secondary blockade
to distinguish from the first blockade. The eigen-
frequancies of the perturbed system can be written as
E± = ∆|ss〉±(ε) = ∆(ε)/2 ±

√
(∆(ε/2))2 + (µ2

1/R3)2,
which is obviously related to ∆ and equivalent to the

energy level shift after twice blockade. Here, µ1 is
the transition dipole moment between two diatomic
levels. Moreover, ∆ can be changed by the external
electric filed intensity ε. Therefore, the energy level
shift based on primary and secondary Rydberg inter-
actions can also be ∆-dependent, as shown in Fig. 45
(b), in which the upper curve is for ∆|ss〉+(ε), and
the lower for ∆|ss〉−(ε). Therefore, the dressed FWM
processes can be also controlled by tuning ε directly.

In recent works, we have proposed a scheme to con-
trol the MWM signal in Rydberg atoms by the inter-
action between the dressing effect and Rydberg block-
ade. In the diatomic system, the primary blockade can
be employed to modulate the enhancement, suppres-
sion and avoided crossing of doubly dressed FWM and
singly dressed SWM signals, by controlling the atomic
internuclear distance. In the quadr-atomic system,
secondary blockade occurs and besides the internu-
clear distance, the external electric field intensity can
be also exploited to effectively control the enhance-
ment and suppression of MWM signals. Moreover, we
have also demonstrated the anti-blockade effect, i.e.,
the elimination of primary blockade effect in MWM
process, through the counteraction between Rydberg
blockade and dressing effect from light field. Such
investigation can have potential applications in the
quantum computing with Rydberg atom as the car-
rier of qubit.

VI. SUMMARY

MWM process has shown profound impact upon op-
tical science. Hopefully, we have succeeded in explain-
ing the relationship between MWM and the earlier re-
lated ideas of coherent preparation of atoms by fields
and especially linked it with the concept of the dressed
state. Based on this relationship, the quantum con-
trol of MWM in many domains have been achieved,
as presented in the main body. Specifically, we have
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presented the coexisting and controllable MWM, as
well as the mutual competition with energy exchange
and spatio-temporal interference between coexisting
MWM processes. Also, the spatial shift and splitting
of MWM, as well as spatial gap solitons, vortex soli-
tons, charged dipole-mode solitons, and 2D surface
solitons are described. Furthermore, many nonlinear
optical phenomena related to the quantum nature of
light, such as fluorescence accompanying with MWM,
MWM process in cavity, correlated and squeezed light
and MWM in Rydberg atomic system have been in-
vestigated and presented. Coherent control of MWM
provides a new way to change the optical characteris-
tics of matter, and therefore paves a way to alter the
propagation of optical fields and enhances the gener-
ation of new fields.
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[38] André A, Lukin M D. Phys. Rev. Lett., 2002, 89:
143602

[39] Swartzlander G A, Law C T. Phys. Rev. Lett., 1992,
69: 2503-2506

[40] Gorbach A V, Skryabin D V, Harvey C N. Phys.
Rev. A, 2008, 77: 063810

[41] Gorbach A V, Skryabin D V. Phys. Rev. Lett., 2007,
98: 243601

[42] Krolikowski W, Ostrovskaya E A, Weilnau C, Geisser
M, McCarthy G, Kivshar Y S, Denz C, Luther-
Davies B. Phys. Rev. Lett., 2000, 85: 1424-1427

[43] Yang J, Makasyuk I, Bezryadina A, Chen Z. Opt.
Lett., 2004, 29: 1662-1664

[44] Chen Z, Bezryadina A, Makasyuk I, Yang J. Opt.
Lett., 2004, 29: 1656-1658

[45] Makris K G, Suntsov S, Christodoulides D N, Stege-
man G I, Hache A. Opt. Lett., 2005, 30: 2466-2468

[46] Suntsov S, Makris K G, Christodoulides D N, Stege-
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[71] DBraje D A, Balić V, Goda S, Yin G, Harris S. Appl.

Phys. Lett., 2004, 93: 183601
[72] van der Wal C H, Eisaman M D, André A, Walsworth
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Symbol

P polarization Λ grating period

χ susceptibility g
√

N coupling strength
k wave vector A the envelope amplitude
E electric field intensity cm,n the Fourier coefficient
ω Frequency µ the dipole matrix element
G Rabi Frequency ∆n refractive index contrast
∆ frequency detuning α the ellipse orientation
ρ̂ atomic density χm Fourier coefficients of the susceptibility
P power Ω the Raman resonant frequency
l coherence length δk⊥ transverse propagation wave-vector
λ wavelength nS the self-Kerr nonlinear coefficient
N atomic density φ the azimuthal coordinate
I intensity nX the cross-Kerr nonlinear coefficient
n2 nonlinear index m the integer number
ng modified group index φNL phase shift
n0 nonlinear index H Hamiltonian

Abbreviation

EIT electromagnetically induced transparency
FWM four-wave mixing
SWM six-wave mixing
EWM eight-wave mixing
SPM self-phase modulation
XPM cross-phase modulation
EISD electromagnetically induced spatial dispersion
1D one-dimensional
DDFWM doubly dressed FWM
AT Autler-Townes
SPDC spontaneous parametric down-conversion
RWA rotating-wave approximation
DSFD double-sided Feynman diagrams
APD avalanche photodiode detector
EIG electromagnetically induced grating
EIL electromagnetically induced lattice
PBG photonic band gap
EIF electromagnetically induced focusing
CQ cubic-quintic
EID electromagnetically induced diffraction
VRS vacuum Rabi splitting
OB optical bistability
SNL shot-noise limit
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原原原子子子介介介质质质中中中的的的多多多波波波混混混频频频相相相干干干控控控制制制

楼 兰1，问 峰2，秦勐哲2，贺嘉楠2，张彦鹏2，肖 敏3

1. 广东省公安消防总队，中国 广州 510640
2. 西安交通大学电子物理与器件教育部重点实验室 & 陕西省信息光子技术重点实验室，中国 西安 710049

3. 阿肯色大学物理系，费耶特维尔，美国 阿肯色 72701 & 南京大学固体微结构物理国家实验室，中国 南京 210093

摘摘摘要要要: 多波混频是一种重要的非线性光学过程，其在非线性光学和量子信息科学中有重要的应用。
本文详细讲述了该领域的进展。在频域中，首先通过电磁诱导透明在实验上得到了共存的四六波混

频信号，继而观察到了它们之间伴随着能量交换和时空干涉的相互竞争。 此外，两个竞争的四六波

混频之间的抑制增强以及相应的 AT 分裂也被实验证实了。 在空间域中，研究了因为两束泵浦光之

间干涉导致的电磁诱导光栅，对多波混频信号的空间移动和分裂也进行了讨论，并且得到了帯隙孤

子，涡旋孤子，有荷偶极孤子，以及二维表面孤子。 这些概念可以扩展到量子领域，并且与之相关

的一些效应具有研究价值。本文同时也讨论了多波混频在腔量子电动力学中，里德堡态中，以及全

固态量子计算中的发展前景以及潜在应用。

关关关键键键词词词：：： 四波混频；六波混频；电磁诱导透明；腔；偶极孤子


